

Die Cubical Quad-Mythen und Fakten

Martin Steyer DK7ZB

Aussagen zur Cubical Quad:

"Königin der DX-Antennen"

Cubical Quad hat eine flachere Abstrahlung als Yagi

Die Quad öffnet die Bänder früher und schließt sie später

Die Quad ist sehr breitbandig

Geschichtliche Entwicklung

1938: Radiostation HCJB in Quito (Ekuador)
Dort entwickelt Clarence C. Moore (W9LZX) die
Cubical Quad

Im ARRL-Handbook von 1953 ist die Quad noch nicht erwähnt, aber 2-, 3- und 4-El.-Yagis (Beams)

Schon 1954 hat Herbert Greiner (DL1LU) durch Messungen festgestellt, daß eine 2-El.-Quad wie eine 3-El.-50-Ω-Yagi 5 dBd Gewinn hat (!). Dies ist exakt

EXTRA! DATA FOR THE 3 NEW HAM BANDS!

ALL ABOUT

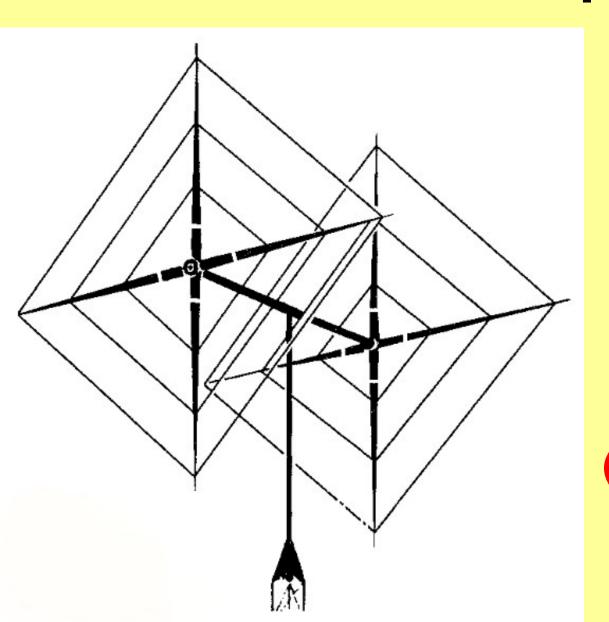
CUBICAL QUAD

ANTENNAS

The Famous Handbook on Quad Theory, Design, Construction and Operation

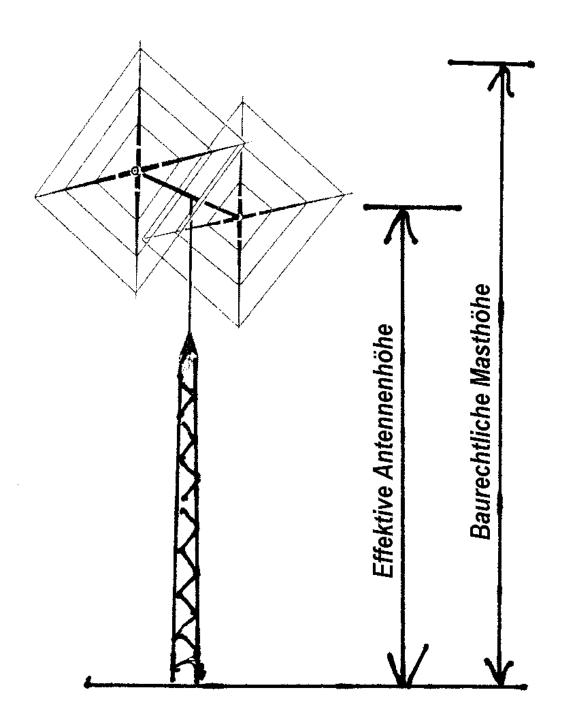
How to Build and Adjust Quads

Quad vs. Yagi • Monster Quads Mini-Quads • Multiband Quads Gain figures • X-Q high gain Quad


WILLIAM I. ORR, W6SAI STUART D. COWAN, W2LX

NEW 3rd EDITION

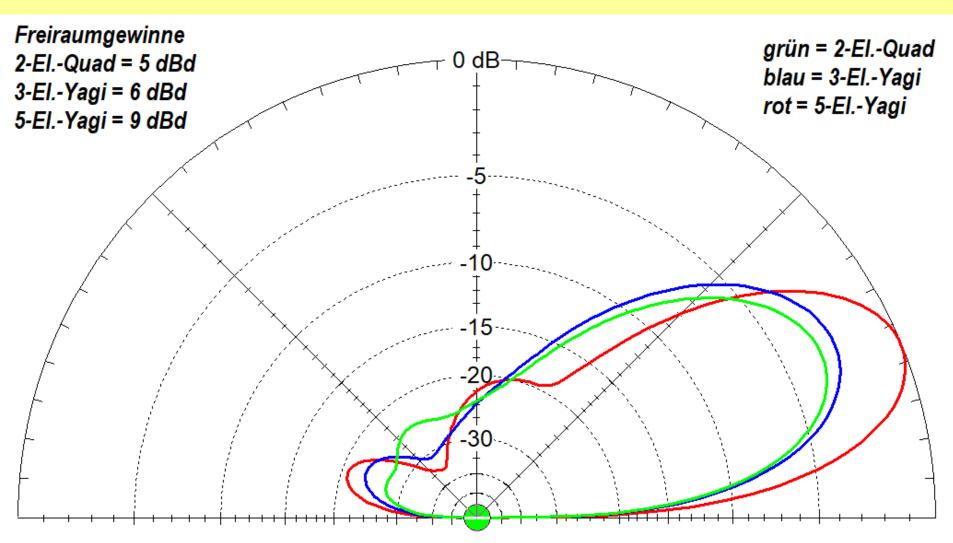
Das Standardwerk für Cubical Quad- Antennen


Nach diesem Buch (1st Edition) habe ich 1973 meine erste Boomquad für 10 m und 15 m gebaut

2-EI-Boomquad

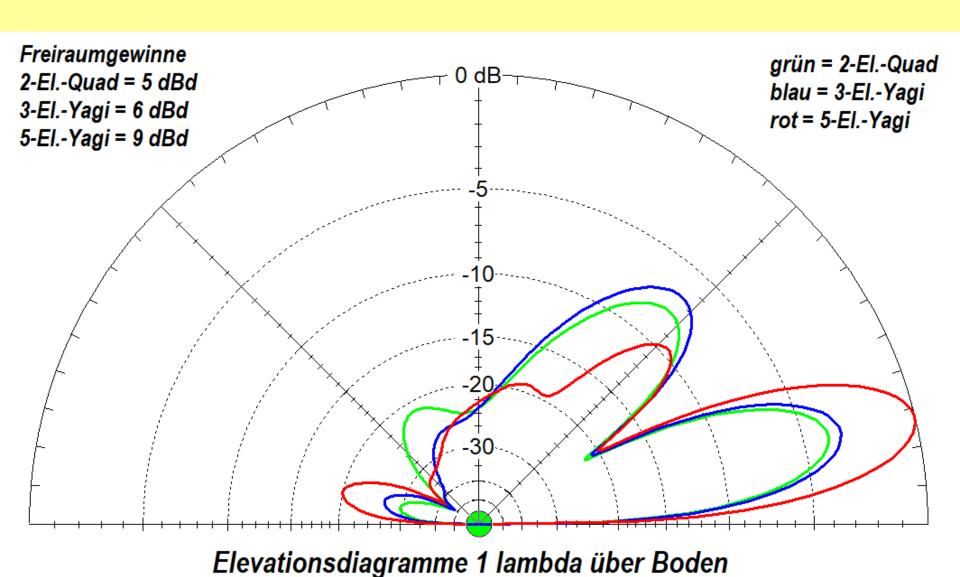
Vorteil: Einfachere Konstrukion

Nachteil:
Unterschiedliche
Impedanzen je
Band
(Reflektorabstand!)



Vergleich

Masthöhe effektiv und baurechtlich


Nachteilig für die Quad!

Elevationsdiagramme über Boden mittlerer Leitfähigkeit

Elevationsdiagramme 0,5 lambda über Boden

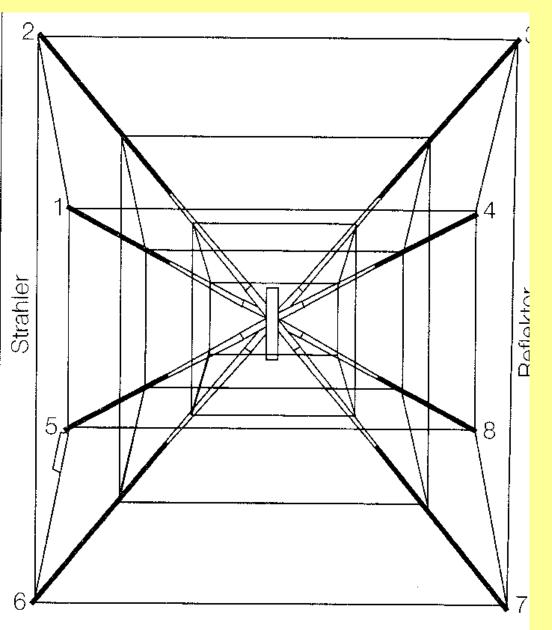
Elevationsdiagramme über Boden mittlerer Leitfähigkeit

2-ElBoom-Quad
für 4 m/6 m
mit 110 Ω
und
2 Speiseleitungen

FUNKAMATEUR Heft 4/2016

Anpassung an 50 Ω mit λ/4-Leitung 75-Ω-Kabel

Spreizer: GFK-Zeltstäbe

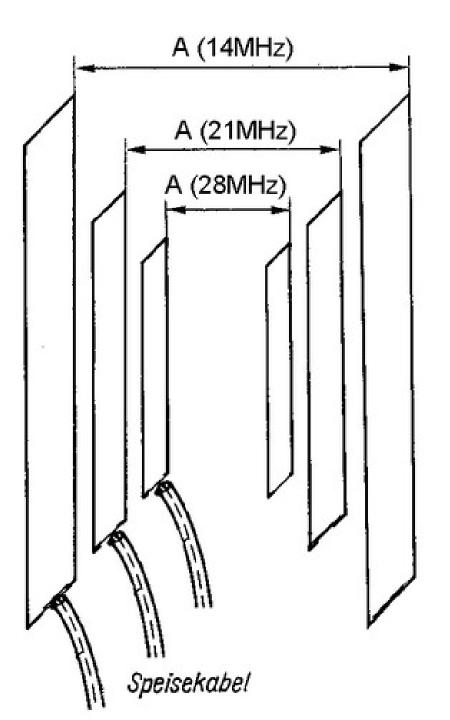


2-El-Boom-Quad von Arthur, DF3AH

4 Bänder (10 m, 15 m, 17 m, 20 m)

Speisung mit Gamma- Match

2-EI-Spider-Quad

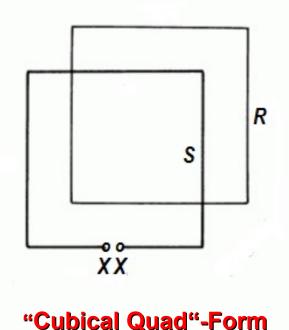


Vorteil:

Gleiche Impedanz auf allen Bändern

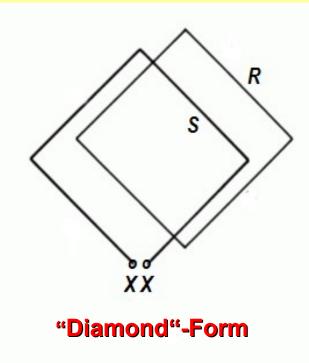
Nachteil:

Mechanisch schwieriger zu realisieren

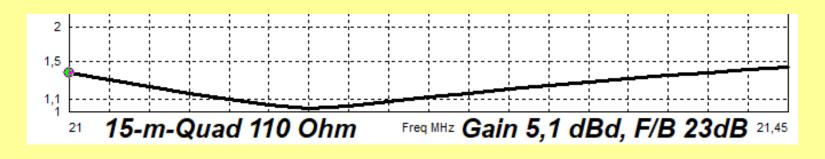


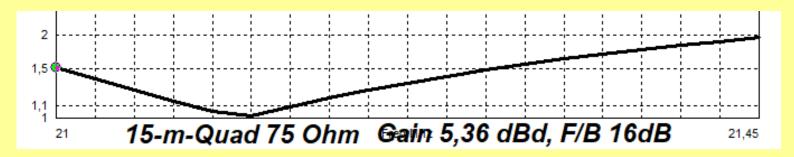
2-EI-Spider-Quad

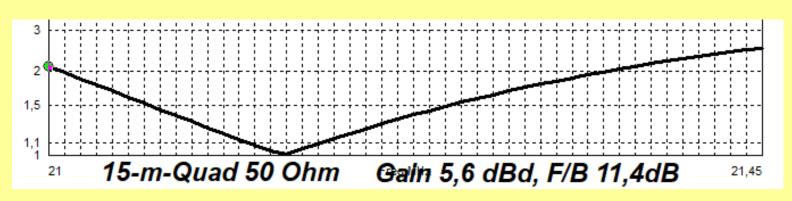
Anordnung der Elemente


Zusammenhänge bei 2-El.-Quad-Antennen

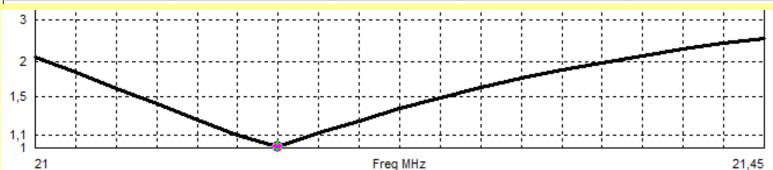
Impedanz	Umfang Strahler	Umfang Reflektor	Abstand	Gewinn	V/R- Verhältnis	Band- breite
50 Ω	1,0115 λ	1,0557 λ	0,12 λ	5,76 dBd	9,5 dB	1,1 %
70 Ω	1,0115 λ	1,06 λ	0,144 λ	5,72 dBd	10 dB	1,7 %
112 Ω	1,008 λ	1,083 λ	0,144 λ	5,23 dBd	22,5 dB	3,6 %
112 Ω	1,0125 λ	1,077 λ	0,168 λ	5,46 dBd	15 dB	3,6 %

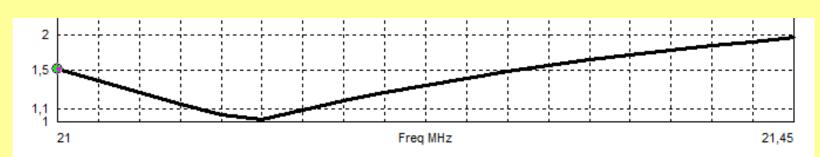



Einspeisung unten: Horizontalpolarisation

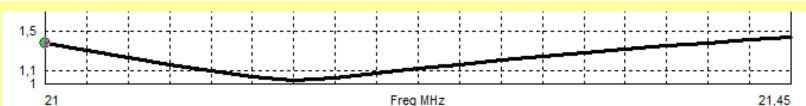

Einspeisung seitlich: Vertikalalpolarisation

Zusammenhänge zwischen Impedanz, Gewinn und V/R-Verhältnis

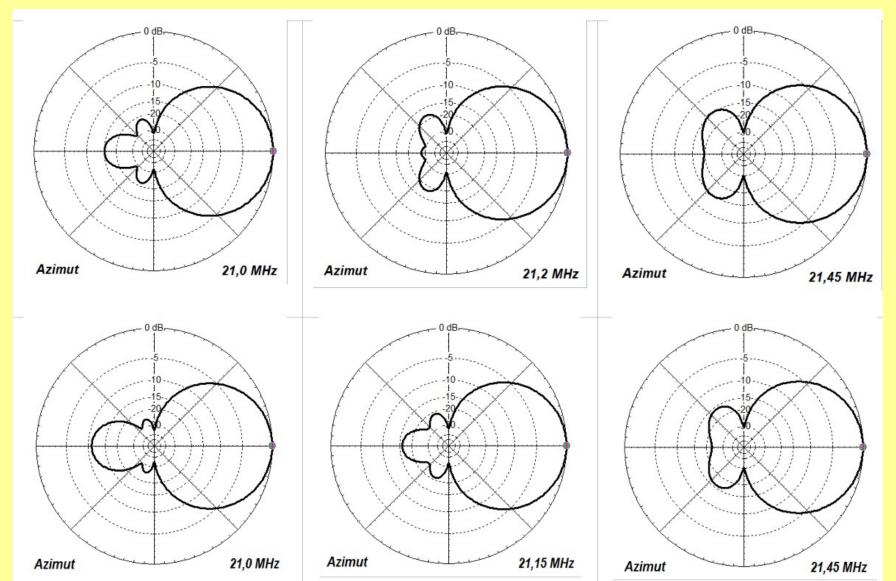



2-El-Cubical Quad 50 Ω

Frequenz	Impedanz	SWR	Gewinn	V/R
21,0 MHz	37 - j 30 Ω	2,1	5,7 dBd	8 dB
21,05 MHz	41 - j 19 Ω	2,0	5,7 dBd	9 dB
21,1 MHz	45 - j 9 Ω	1,25	5,7 dBd	10 dB
21,15 MHz	50 +/- j 0 Ω	1,0	5,6 dBd	11 dB
21,2 MHz	$55 + j 10 \Omega$	1,23	5,5 dBd	14 dB
21,25 MHz	$61 + j 19 \Omega$	1,4	5,5 dBd	21 dB
21,3 MHz	$67 + j 23 \Omega$	1,74	5,4 dBd	16 dB
21,35 MHz	$74 + j 35 \Omega$	2,0	5,3 dBd	17 dB
21,4 MHz	80 + j 43 Ω	2,25	5,3 dBd	19 dB
21,45 MHz	$87 + j 50 \Omega$	2,5	5,2 dBd	20 dB


2-El-Cubical Quad 75 Ω

Frequenz	Impedanz	SWR	Gewinn	V/R
21,0 MHz	60 - j 23 Ω	1,51	5,6 dBd	11 dB
21,05 MHz	66 - j 13 Ω	1,25	5,5 dBd	12,5 dB
21,1 MHz	73 - j 3 Ω	1,06	5,4 dBd	14 dB
21,15 MHz	$80 + j 5 \Omega$	1,1	5,3 dBd	16 dB
21,2 MHz	$87 + j 14 \Omega$	1,25	5,3 dBd	18 dB
21,25 MHz	$95 + j 21 \Omega$	1,4	5,2 dBd	21 dB
21,3 MHz	$102 + j 28 \Omega$	1,55	5,1 dBd	23 dB
21,35 MHz	$110 + j 34 \Omega$	1,7	5,0 dBd	25 dB
21,4 MHz	$117 + j 39 \Omega$	1,83	4,9 dBd	25 dB
21,45 MHz	$124 + j 44 \Omega$	1,96	4,8 dBd	22 dB



2-El-Cubical Quad 110 Ω

Frequenz	Impedanz	SWR	Gewinn	V/R
21,00 MHz	88,5 - j 12,5 Ω	1,36	5,39 dBd	15,2 dB
21,05 MHz	94 - j 7 Ω	1,22	5,31 dBd	17,3 dB
21,10 MHz	101 - j 7,5 Ω	1,10	5,22 dBd	19,8 dB
21,15 MHz	$108 + j 2 \Omega$	1,02	5,14 dBd	23,0 dB
21,20 MHz	$115 + j 7,5 \Omega$	1,08	5,05 dBd	27,0 dB
21,25 MHz	$122 + j \ 12,5 \ \Omega$	1,16	4,96 dBd	30,4 dB
21,30 MHz	$130 + j 17 \Omega$	1,24	4,87 dBd	28,0 dB
21,35 MHz	$135 + j 21 \Omega$	1,3	4,78 dBd	24,4 dB
21,40 MHz	$141 + j 24 \Omega$	1,37	4,70 dBd	21,6 dB
21,45 MHz	$146 + j 28 \Omega$	1,43	4,61 dBd	19,5 dB

Typische Azimutdiagramme 2-El-Quad oben 110 Ω , unten 75 Ω

Zusammenhänge hei Quad-Antennen

Lusaiiiiic	illialige bei Quad-Alltelliell
Reflektorabstand	Kleiner Abstand ergibt niedrige Impedanz

und Impedanz Großer Abstand ergibt höhere Impedanz

Größere Reflektorlänge ergibt höhere Impedanz. Reflektorlänge und

Kleinere Reflektorlänge ergibt niedrigere Impedanz **Impedanz** Impedanz, Gewinn Niedrige Impedanz ergibt höhere Gewinne, aber und V/R-Verhältnis schlechtere Rückdämpfung. Höhere Impedanz

ergibt niedrigere Gewinne, aber bessere Rückdämpfung

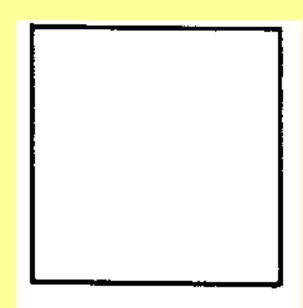
Niedrige Impedanz ergibt kleinere Bandbreite Impedanz und

Bandbreite Höhere Impedanz ergibt größere Bandbreite **Drahteigenschaften** Dickere Drähte ergeben höhere (!)

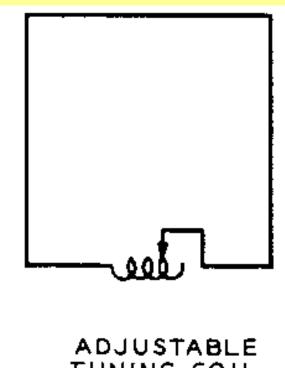
niedrigere Resonanzfrequenz

Resonanzfrequenz. Isolierte Drähte ergeben

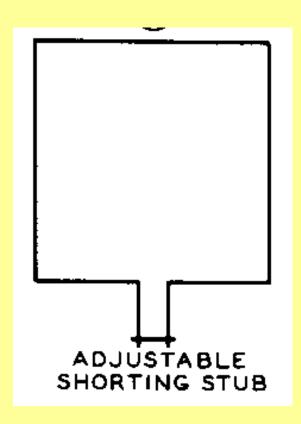
Abgleich einer Quad


Kleinerer Reflektorabstand: Impedanz sinkt Größerer Reflektorabstand: Impedanz steigt

Kleinerer Reflektorrahmen: Impedanz sinkt Größerer Reflektorrahmen: Impedanz steigt

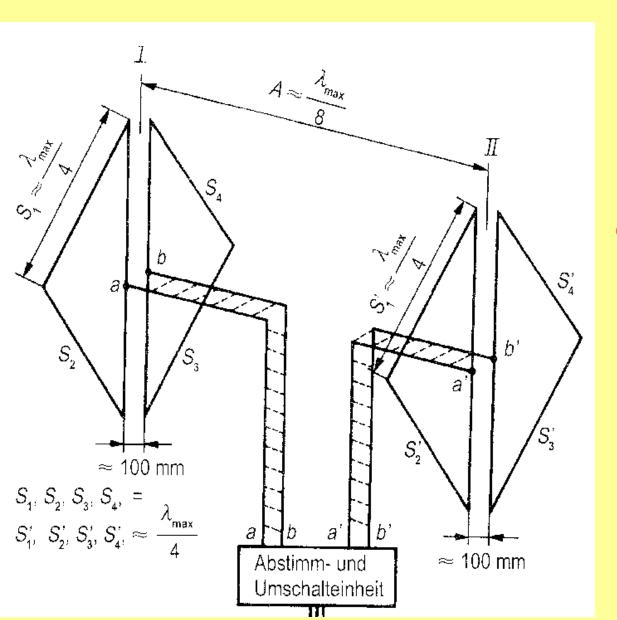

Abgleich wie früher empfohlen auf max. Rückdämpfung führt zwar zu optimiertem Richtdiagramm, verändert aber wie oben beschrieben die Impedanz

Umfangsänderungen am Reflektor zieht eine Veränderung der Resonanzfrequenz im Strahlerrahmen nach sich, daher wechselseitiger Nachabgleich nötig!


Abgleichmöglichkeiten für den Reflektorrahmen

SELF-RESONANT LOOP

TUNING COIL


Simulation einer Quad

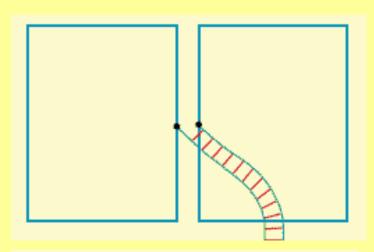
Problem: Wie werden die nicht gespeisten Rahmen simuliert? Geschlossen, offen oder anders?

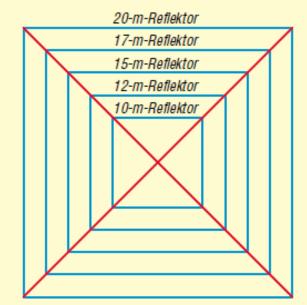
Bei Gamma-Anpassung geschlossen.

Bei Relaisumschaltung und 110 Ω wirken die angeschlossenen 75-Ω-Kabel wie ein Kondensator und haben damit eine verkürzende Wirkung

2-EI-Quad nach DJ4VM

DL-QTC 9/68

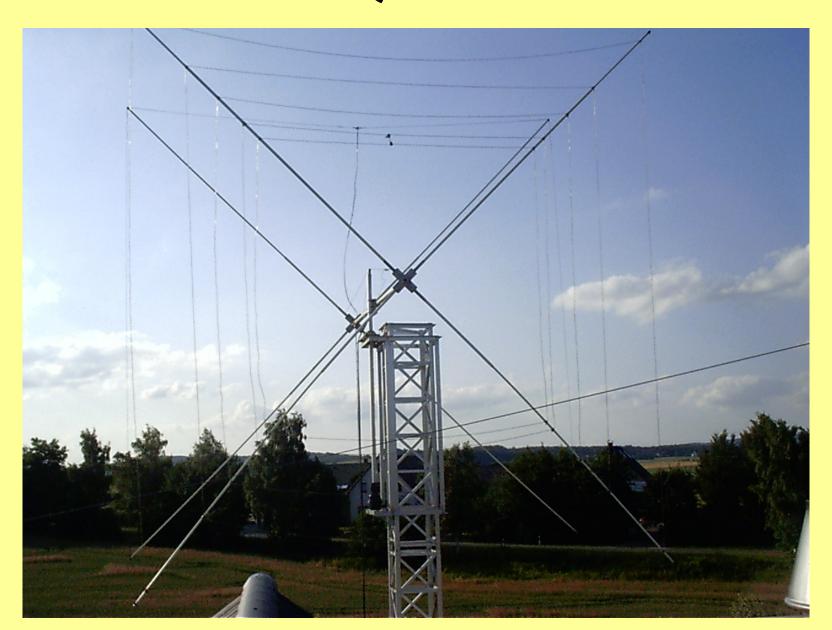

Vorteil:


Erhöhte Gewinne auf den höheren Bändern

Nachteil:

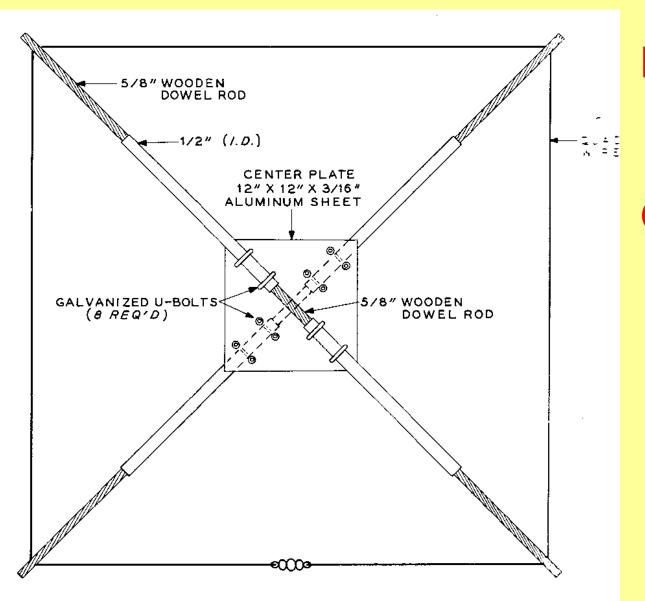

Zwei Abstimmboxen für Strahler und Reflektor

2-EI-Quad nach DK7ZB



Zentral gespeister Rahmen mit resonanten Reflektoren

Als TX-6 von Titanex vermarktet Speisung mit 150- Ω -Kabel (2x75 Ω parallel)


2-EI-DK7ZB-Quad bei DL1DTC

2-El-Quad nach DK7ZB

in Diamond-Form gebaut von Dave, GOVXE

Konstruktion der Spreizer

GFK-Material oder Alu-Stücke mit GFK-Verbindern

Konstruktion Kreuzstück mit Regalverbindern aus dem Baumarkt

Paßt genau in ein Vierkantrohr 23,5x1,5 mm der Firma Alfer (Baumarkt) oder 25x2 mm Rohr

Geeignet für Quads 15 m und höher

Kreuzstück mit GFK-Zeltstäben für die 4 m / 6 m-Quad, Boom 86 cm

Ideal ist unisolierter Draht. Warum?

Mit unisolierten Drähten lassen sich Simulationsergebnisse mit EZNEC 1:1 in die Praxis umsetzen, in der Regel ist kein Abgleich notwendig!

Isolierte Drähte lassen sich ungenauer simulieren, weil Dicke und Er (Dielektizitätskonstante) des Isoliermaterials meist nicht bekannt sind. Abgleicharbeiten sind die zwangsläufige Folge.

Leider ist Kupfer-Bronze-Litze, die früher üblich zum Antennenbau war, nicht mehr erhältlich oder sauteuer. Alternative: Aluminiumdraht

VOSS.farming - Aluminium-Draht, Aludraht 400 m / 1,6 mm

- VOSS.farming hochwertiger Aluminium-Draht
- Reißfestigkeit bis 60kg, geeignet für lange Zäune
- hohe Korrosionsbeständigkeit & geringes Gewicht
- > 400m mit Ø 1,6mm, Widerstand 0,02 Ω/m

Danke für ihre Aufmerksamkeit

Vortrag als PDF, e-mail an

dk7zb@darc.de

oder besser

www.dk7zb.com

auf der News-Seite als download