G4CQM's Antennas - Homebrew Yagi Projects...


Self build OWA yagi designs taken to the next level!

Special thanks to builders/testers Richard G4WFR, Jerry G4JQN, and Don G0RQL!

Updated 25-01-2020...

A comprehensive range of low noise low Q designs for the VHF/UHF Amateur Radio bands. Very easy to build requiring 1 Inch square booms (restricted to 5M maximum length) and 1/2 Inch round elements...

G4CQM's Antennas (Homebrew Yagi Projects) represent a quantum leap in Derek's development of the AOWA (Advanced OWA) style yagi beam using a simple Split Dipole as the Driven Element, see Dipoles Explored to expose the myths! There are no bent elements or different diameters to contend with so construction could not be more straightforward... A clear advantage is to deliver 50Ω Direct Feed with maximum efficiency. Modern computer optimised AOWA (Advanced OWA) yagi designs have no need for outdated/primitive matching systems such as hairpins (shunt matching) and the like!

AOWA (Advanced OWA) yagis situated in a noisy urban/residential environment outperform LFA's and designs with bent elements in most cases, much lower temperature and better G/Ta! Each design has a relatively shallow Q-factor gradient like that of a highly stable DL6WU long yagi! Meanwhile radiation efficiency >98% in all featured designs ensures best overall performance!

A forensic analysis presentation using Arie Voors free and powerful 4nec2 (NEC based antenna modeler and optimizer) along with detailed build instructions will guide the homebrew Ham Radio constructor toward a successful outcome.


Derek Hilleard G4CQM


Don't use end caps on any of the elements (driven and parasitics), these will affect tuning, making wet weather performance worse! End caps become capacity hats whilst element ends are a voltage anti-node, the worst possible place to attach/place anything!



Conversely it is possible to seal the ends of the elements by using a plastic end plug as seen above, provided that they are completely flush with the element end and don't cover any of the radiating surface area!

Low Noise...

All G4CQM's Antennas (Homebrew Yagi Projects) designs benefit from a carefully balanced lobe distribution regime in both E & H planes in order to deliver a quiet antenna system!

Unfortunately man-made noise in urban/residential environments may not be emanating from one direction alone, but all around instead, and most likely in differing magnitudes on different beam headings!

Despite all of this a 'Low Noise' yagi design can help in copying weaker signals by reducing the overall noise pickup. If attention is paid by the designer to delivering a cleaner pattern in both planes (E & H) then noticeable and real improvements will be observed!

Do you really understand the significance of Lionels new interactive VE7BQH Antenna Tables which now incorporates both rural and residential local noise temperatures, simulating local environments? This is truly a game changer, revealing those yagi antenna designs that really are low noise. You will soon learn that there is much more required in the design process than just enhancing F/B (Front to Back) or F/R (Front to Rear) power ratio in order to achieve the lowest temperature yagi. Instead, looking at overall sidelobe content, in particular the forward lobes, has a major impact on delivering a quiet EME antenna system for the higher bands (144MHz and upward)!


TANT Vs AGTC - Residential Comparison - Note difference around 30° elevation, which one is right?
4 x WA26075 in TANT4 x WA26075 in AGTC
4 x WA26075 in TANT4 x WA26075 in AGTC


Low Q...

Yagis exhibit a frequency response similar to that of a Low Pass Filter (LPF), it is most important to ensure that the cut-off frequency is well above the desired upper bandwidth limit!

Q-factor can have a major impact on stability in bad weather and proximity to other structures. It's not just about available VSWR bandwidth. The lower 'Q' designs offer greater stability, and should be considered as the first choice in locations suffering extreme climatic conditions, perhaps even above other desirables!

Don't confuse true resonance with matching, the point of lowest Q and minimun VSWR are not always on the same frequency! A good match on a spot frequency can be achieved no matter where Q is, but the available (useable) VSWR bandwidth around that spot frequency reduces as average Q-factor rises.


High Q design Vs Low Q design - Note SWR (140-150MHz)
NEXTGEN 8 ele (2009)WA8C9 8 ele (2019)
NEXTGEN 8 ele (2009)WA8C9 8 ele (2019)


Genuine low Q yagi designs are more likely to deliver performance shown in software models because they are less sensitive to their surroundings!

You cannot assume a yagi to be low Q just because the VSWR bandwidth looks good, this would be a mistake! An example of this fact as seen below is the G0KSC 8 ele OWL GT, at 145MHz the VSWR looks very good! However, Q-factor rises rapidly soon after giving an average (144-146MHz) of just over 57!

Average Q-factor (144 - 146MHz) in the real world: Guide based on field trials (during my six year research project) and recent analysis (updated 2019)...

Avg Q-factorLikely outcome!

< 10

Maximum stability

10 - 20

Very good to reasonable stability

20 - 40

Can become unstable in certain conditions

> 40

Prone to instability


The simple rule, the lower the 'Q' the better is stability. Yagi designs sporting an exponential curve (very steep average Q-factor plot) are not ideal. This dramatically raises the average 'Q' and warns that the cut-off frequency is too close or may already be in band! Dielectric loading effects caused by wet weather will drag the cut-off frequency even further LF and give rise to instability!

The DL6WU 10 ele yagi exhibits an ideal average Q-factor plot (shallow gradient). Meanwhile WA10XX as an example offers an even lower Q, keep this in mind when choosing your next design!...

Wet Weather & Q-factor (140-150MHz) study, continued reading is here...


DL6WU 10 ele Q-factor

DL6WU 10 element yagi

DL6WU 10 element yagi - Average Q-factor = 20.32 (144-146MHz)
DL6WU 10 element yagi


| DL6WU10.nec | DL6WU10GNU.gnumeric |


WA10XX 10 ele Q-factor

WA10XX 10 element yagi

WA10XX 10 element yagi - Average Q-factor = 12.94 (144-146MHz)
WA10XX 10 element yagi


| WA10XX.nec | WA10XXGNU.gnumeric |


G0KSC 8 ele OWL GT Q-factor

G0KSC 8 ele OWL GT

8OWLGT 8 element yagi - Average Q-factor = 57 (144-146MHz)
8OWLGT 8 element yagi


| 8OWLGT.ANT | 8OWLGTGNU.gnumeric |

YO7 Pro and AO Professional running in DOSBox on Windows 8.1 Professional OS

Wave Antennas (G4CQM's Homebrew Yagi Projects) are very special yagi designs for the Amateur Radio VHF/UHF bands created by Antenna Designer Derek Hilleard G4CQM, and were first conceived in K6STI's YO7 Pro and AO Professional version software...


Wave Antennas (G4CQM's Homebrew Yagi Projects) are very special yagi designs for the Amateur Radio VHF/UHF bands created by Antenna Designer Derek Hilleard G4CQM, and were first conceived in K6STI's YO7 Pro and AO Professional version software.

NEC Amateur or Professional program?

The Numerical Electromagnetics Code (NEC) was developed (January 1981) at the Lawrence Livermore National Laboratory in California (USA), sponsors included the Naval Ocean Systems Centre and Air Force Weapons Laboratory. It was clearly intended in the first instance for professional use by those sponsor government organisations and was not developed as an amateur program!

The current version of NEC/MOM is due to extensive work carried out by Messrs G.J. Burke and A.J. Poggio.

NEC-2 is user-oriented, the computer code intended for analysis of the electromagnetic response of antennas and metal structures. There are several versions of NEC, NEC-2 was released to the public and is now available on most computing platforms. NEC-2 has been used by several software developers in their antenna software as a reference and method of providing calibration.

G4CQM's Antennas...

  • Private experimenters are free to use these designs for their own personal enlightenment. However, no guarantee or warranty is offered or implied.
Flag Counter