/*------------------------------------------------------------------------ Arduino library to control Adafruit Dot Star addressable RGB LEDs. Written by Limor Fried and Phil Burgess for Adafruit Industries. Adafruit invests time and resources providing this open source code, please support Adafruit and open-source hardware by purchasing products from Adafruit! ------------------------------------------------------------------------ This file is part of the Adafruit Dot Star library. Adafruit Dot Star is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. Adafruit Dot Star is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU Lesser General Public License along with DotStar. If not, see . ------------------------------------------------------------------------*/ #include "Adafruit_DotStar.h" #if !defined(__AVR_ATtiny85__) #include #endif #define USE_HW_SPI 255 // Assign this to dataPin to indicate 'hard' SPI // Constructor for hardware SPI -- must connect to MOSI, SCK pins Adafruit_DotStar::Adafruit_DotStar(uint16_t n, uint8_t o) : numLEDs(n), dataPin(USE_HW_SPI), brightness(0), pixels(NULL), rOffset(o & 3), gOffset((o >> 2) & 3), bOffset((o >> 4) & 3) { updateLength(n); } // Constructor for 'soft' (bitbang) SPI -- any two pins can be used Adafruit_DotStar::Adafruit_DotStar(uint16_t n, uint8_t data, uint8_t clock, uint8_t o) : dataPin(data), clockPin(clock), brightness(0), pixels(NULL), rOffset(o & 3), gOffset((o >> 2) & 3), bOffset((o >> 4) & 3) { updateLength(n); } Adafruit_DotStar::~Adafruit_DotStar(void) { // Destructor if(pixels) free(pixels); if(dataPin == USE_HW_SPI) hw_spi_end(); else sw_spi_end(); } void Adafruit_DotStar::begin(void) { // Initialize SPI if(dataPin == USE_HW_SPI) hw_spi_init(); else sw_spi_init(); } // Pins may be reassigned post-begin(), so a sketch can store hardware // config in flash, SD card, etc. rather than hardcoded. Also permits // "recycling" LED ram across multiple strips: set pins to first strip, // render & write all data, reassign pins to next strip, render & write, // etc. They won't update simultaneously, but usually unnoticeable. // Change to hardware SPI -- must connect to MOSI, SCK pins void Adafruit_DotStar::updatePins(void) { sw_spi_end(); dataPin = USE_HW_SPI; hw_spi_init(); } // Change to 'soft' (bitbang) SPI -- any two pins can be used void Adafruit_DotStar::updatePins(uint8_t data, uint8_t clock) { hw_spi_end(); dataPin = data; clockPin = clock; sw_spi_init(); } // Length can be changed post-constructor for similar reasons (sketch // config not hardcoded). But DON'T use this for "recycling" strip RAM... // all that reallocation is likely to fragment and eventually fail. // Instead, set length once to longest strip. void Adafruit_DotStar::updateLength(uint16_t n) { if(pixels) free(pixels); uint16_t bytes = (rOffset == gOffset) ? n + ((n + 3) / 4) : // MONO: 10 bits/pixel, round up to next byte n * 3; // COLOR: 3 bytes/pixel if((pixels = (uint8_t *)malloc(bytes))) { numLEDs = n; clear(); } else { numLEDs = 0; } } // SPI STUFF --------------------------------------------------------------- void Adafruit_DotStar::hw_spi_init(void) { // Initialize hardware SPI #ifdef __AVR_ATtiny85__ PORTB &= ~(_BV(PORTB1) | _BV(PORTB2)); // Outputs DDRB |= _BV(PORTB1) | _BV(PORTB2); // DO (NOT MOSI) + SCK #else SPI.begin(); #if defined(__AVR__) || defined(CORE_TEENSY) SPI.setClockDivider(SPI_CLOCK_DIV2); // 8 MHz (6 MHz on Pro Trinket 3V) #else SPI.setClockDivider((F_CPU + 4000000L) / 8000000L); // 8-ish MHz on Due #endif SPI.setBitOrder(MSBFIRST); SPI.setDataMode(SPI_MODE0); #endif } void Adafruit_DotStar::hw_spi_end(void) { // Stop hardware SPI #ifdef __AVR_ATtiny85__ DDRB &= ~(_BV(PORTB1) | _BV(PORTB2)); // Inputs #else SPI.end(); #endif } void Adafruit_DotStar::sw_spi_init(void) { // Init 'soft' (bitbang) SPI pinMode(dataPin , OUTPUT); pinMode(clockPin, OUTPUT); #ifdef __AVR__ dataPort = portOutputRegister(digitalPinToPort(dataPin)); clockPort = portOutputRegister(digitalPinToPort(clockPin)); dataPinMask = digitalPinToBitMask(dataPin); clockPinMask = digitalPinToBitMask(clockPin); *dataPort &= ~dataPinMask; *clockPort &= ~clockPinMask; #else digitalWrite(dataPin , LOW); digitalWrite(clockPin, LOW); #endif } void Adafruit_DotStar::sw_spi_end() { // Stop 'soft' SPI pinMode(dataPin , INPUT); pinMode(clockPin, INPUT); } #ifdef __AVR_ATtiny85__ // Teensy/Gemma-specific stuff for hardware-half-assisted SPI #define SPIBIT \ USICR = ((1< LED data uint16_t n = numLEDs; // Counter uint16_t b16 = (uint16_t)brightness; // Type-convert for fixed-point math if(dataPin == USE_HW_SPI) { #ifdef SPI_PIPELINE uint8_t next; for(i=0; i<3; i++) spi_out(0x00); // First 3 start-frame bytes SPDR = 0x00; // 4th is pipelined do { // For each pixel... while(!(SPSR & _BV(SPIF))); // Wait for prior byte out SPDR = 0xFF; // Pixel start for(i=0; i<3; i++) { // For R,G,B... next = brightness ? (*ptr++ * b16) >> 8 : *ptr++; // Read, scale while(!(SPSR & _BV(SPIF))); // Wait for prior byte out SPDR = next; // Write scaled color } } while(--n); while(!(SPSR & _BV(SPIF))); // Wait for last byte out #else for(i=0; i<4; i++) spi_out(0x00); // 4 byte start-frame marker if(brightness) { // Scale pixel brightness on output do { // For each pixel... spi_out(0xFF); // Pixel start for(i=0; i<3; i++) spi_out((*ptr++ * b16) >> 8); // Scale, write RGB } while(--n); } else { // Full brightness (no scaling) do { // For each pixel... spi_out(0xFF); // Pixel start for(i=0; i<3; i++) spi_out(*ptr++); // Write R,G,B } while(--n); } #endif // Four end-frame bytes are seemingly indistinguishable from a white // pixel, and empirical testing suggests it can be left out...but it's // always a good idea to follow the datasheet, in case future hardware // revisions are more strict (e.g. might mandate use of end-frame // before start-frame marker). i.e. let's not remove this. for(i=0; i<4; i++) spi_out(0xFF); } else { // Soft (bitbang) SPI for(i=0; i<4; i++) sw_spi_out(0); // Start-frame marker if(brightness) { // Scale pixel brightness on output do { // For each pixel... sw_spi_out(0xFF); // Pixel start for(i=0; i<3; i++) sw_spi_out((*ptr++ * b16) >> 8); // Scale, write } while(--n); } else { // Full brightness (no scaling) do { // For each pixel... sw_spi_out(0xFF); // Pixel start for(i=0; i<3; i++) sw_spi_out(*ptr++); // R,G,B } while(--n); } for(i=0; i<4; i++) sw_spi_out(0xFF); // End-frame marker (see note above) } } void Adafruit_DotStar::clear() { // Write 0s (off) to full pixel buffer memset(pixels, 0, (rOffset == gOffset) ? numLEDs + ((numLEDs + 3) / 4) : // MONO: 10 bits/pixel numLEDs * 3); // COLOR: 3 bytes/pixel } // Set pixel color, separate R,G,B values (0-255 ea.) void Adafruit_DotStar::setPixelColor( uint16_t n, uint8_t r, uint8_t g, uint8_t b) { if(n < numLEDs) { uint8_t *p = &pixels[n * 3]; p[rOffset] = r; p[gOffset] = g; p[bOffset] = b; } } // Set pixel color, 'packed' RGB value (0x000000 - 0xFFFFFF) void Adafruit_DotStar::setPixelColor(uint16_t n, uint32_t c) { if(n < numLEDs) { uint8_t *p = &pixels[n * 3]; p[rOffset] = (uint8_t)(c >> 16); p[gOffset] = (uint8_t)(c >> 8); p[bOffset] = (uint8_t)c; } } // Convert separate R,G,B to packed value uint32_t Adafruit_DotStar::Color(uint8_t r, uint8_t g, uint8_t b) { return ((uint32_t)r << 16) | ((uint32_t)g << 8) | b; } // Read color from previously-set pixel, returns packed RGB value. uint32_t Adafruit_DotStar::getPixelColor(uint16_t n) const { if(n >= numLEDs) return 0; uint8_t *p = &pixels[n * 3]; return ((uint32_t)p[rOffset] << 16) | ((uint32_t)p[gOffset] << 8) | (uint32_t)p[bOffset]; } uint16_t Adafruit_DotStar::numPixels(void) { // Ret. strip length return numLEDs; } // Set global strip brightness. This does not have an immediate effect; // must be followed by a call to show(). Not a fan of this...for various // reasons I think it's better handled in one's sketch, but it's here for // parity with the NeoPixel library. Good news is that brightness setting // in this library is 'non destructive' -- it's applied as color data is // being issued to the strip, not during setPixel(), and also means that // getPixelColor() returns the exact value originally stored. void Adafruit_DotStar::setBrightness(uint8_t b) { // Stored brightness value is different than what's passed. This // optimizes the actual scaling math later, allowing a fast 8x8-bit // multiply and taking the MSB. 'brightness' is a uint8_t, adding 1 // here may (intentionally) roll over...so 0 = max brightness (color // values are interpreted literally; no scaling), 1 = min brightness // (off), 255 = just below max brightness. brightness = b + 1; } uint8_t Adafruit_DotStar::getBrightness(void) const { return brightness - 1; // Reverse above operation } // Return pointer to the library's pixel data buffer. Use carefully, // much opportunity for mayhem. It's mostly for code that needs fast // transfers, e.g. SD card to LEDs. Color data is in BGR order. uint8_t *Adafruit_DotStar::getPixels(void) const { return pixels; }