APPENDIX

Answers to Part Reviews

Friday Evening Review Answers

1 Grab jack handle

2 While car not on ground
3. Move jack handle down
4 Move jack handle up

5 Release jack handle

This solution is simpler than the program presented for removing wheels.
There is no need to begin by grabbing the jack. Because the car is already
in the air, being held up by the jack, we can assume that we know where
the jack is.

The loop in steps 2 through 4 moves the jack handle up and down until
the car has been lowered to the ground. Step 5 completes the program by
releasing the handle of the jack so that the processor’s hand is available
for the next steps.

2. Removing the minus sign between the 212 and 32 causes Visual C++ to
generate the incorrect “missing ;” error message.

3. | fixed the problem by adding a semicolon after the 212 and rebuilt.
Visual C++ built the “corrected” program without complaint.

4. The resulting corrected program calculates a Fahrenheit temperature of
244, which is obviously incorrect.

462

10.

Appendix A

Apparently both “nFactor = 212;” and “32;” are legal commands.
However, the resulting incorrect value for nFactor results in an incorrect
conversion calculation.

Forgetting a minus sign is an understandable mistake for a poor typist
such as I. Had Visual C++ corrected what it thought was a simple missing
semicolon, the program would have compiled and executed without com-
plaint. | would have had to search through the program to find the error
in my calculations. Such an error would have thrown suspicion on the
formula used to convert Celsius degrees to Fahrenheit when a simple typo
is the real problem. This represents a waste of time when the error mes-
sage generated by Visual C++, although incorrect, vectors my attention
directly to the problem.

Rebuilding Conversion.cpp after removing the quote symbol generates
this error message:

Conversion.cpp(29) Error: unterminated string or character
constant

This error message indicates that GNU C++ thinks that the error occurred
on line 29. (That's the significance of the “29” in the error message
itself.)

Because GNU C++ didn't see a quote symbol to terminate the string on
line 26, it thought that the string continued to the next quote that it
saw, which was on line 29. (This quote is actually the beginning of
another string, but GNU C++ doesn’t know that.)

If GNU C++ were to try to fix the quote problem on its own, it might

do one of two things. It could add an extra quote at the point that it
detected the problem, which is the open quote on line 29, thinking that
the open quote should be terminated. Alternatively, it could remove the
quote that it found there thinking that it was put there in error. Both
solutions “fix” the problem to the extent that rebuilding the resulting
program generates no build errors. Try it: add an extra quote to line 29 or
remove the open quote that is there and rebuild. As it turns out, both
solutions work.

With an input of 100 degrees Celsius, the program generates the com-
pletely nonsensical output shown below.
C:\wecc\Programs\lesson3>exit

Enter the temperature in Celsius:100
Fahrenheit value is:;

Answers to Part Reviews 463

cout << nFahrenheit;

cout << Time to return_

11. The GNU C++ solution masks the real problem. The resulting output from
the program is nonsensical and, therefore, gives no hint as to the real
problem. With such output, it is difficult to even get started fixing the
problem unless the programmer knows that there is a syntax error in the
source code that was “fixed” by the compiler.

(Fortunately, the output from this program does lead the knowledgeable
programmer in the direction of the problem; however, not nearly as well
as an error message during the build.)

12. In general, when a compiler attempts to fix a problem automatically it
ends up creating a new problem that is more difficult to trace back to the
original problem.

13. a. Yes

b. No—variables must begin with a letter.

c. No—variable names may not contain spaces.

d. Yes—variable names may contain digits.

e. No—variables cannot begin with an ampersand.

14. // Sum - output the sum of three integers
// input from the user
ffinclude <stdio.h>
ffinclude <iostream.h>

int main(int nArg, char* nArgs[])
{
int nValuel;
int nValue?2;
int nValue3;
cout << “Input three numbers (follow each with newline)”;
cout << “Jf1:7;
cin > nValuel;

cout << “§f2:7;
cin > nValue?;

cout << “#3:7;

464 Appendix A

cin > nValue3;

cout << “The sum is:”;
cout << nValuel + nValue2 + nValue3;

cout << “\n”;
return 0;

}
Extra credit:
replace
cout << nValuel + nValue2 + nValue3;
with
cout << (nValuel + nValue2 + nValue3)/3;

Saturday Morning Review Answers

1. a. Dividing nTons by 1.1 causes a rounding-off error.

b. 2/1.1 equals 1.8 which rounds off to 1. The function returns
1000 kg.

c. The result of dividing 2 by 1.1 is a double-precision floating point.
Assigning this value to the integer nLongTons results in a demotion
that the compiler should note.

Bonus: “Assign double to int. Possible loss of significance.” or words to
that effect.

2. The following function suffers much less from rounding off than its
predecessor:

int ton2kg(int nTons)
{
return (nTons * 1000) / 1.1;
}
3. a. 80 tons converts to roughly 4,500,000,000 g. This is beyond the
range of an int on an Intel-based PC.

b. The only possible solution is to return a float or a double instead
of an int. The range of a f1oat is much larger than that of an int.

Answers to Part Reviews 465

4. a. false
b. true
c. true
d. indeterminate but probably true
You cannot depend on two independently calculated floating-point
variables to be equal.
e. false
The value of n4 is 4. Because the left hand side of the && is false,
the right hand side is not evaluated and the == is never executed
(see section on short circuit evaluation)
5. a. 0x5D

b. 93
¢. 10111010,

It's easiest to perform the addition in binary. Just remember
the rules:

1.0+0 —= 0

2.140 =1

3.0+1—1

4.1+ 1 — 0carry the 1.

Alternatively convert 93 * 2 = 186 back to binary.

Bonus: 0101 1101, * 2 has the same bit pattern shifted to the left
one position and a 0 shoved into the empty position on the right.

d. 0101 1111,
Convert 2 into binary 0000 0010, and OR the two numbers together.
e. true

The 0000 0010, bit is not set; thus, ANDing the two together results
inao.

6. Remember that C++ ignores all white space, including tabs. Thus, while
the else clause appears to belong to the outer if statement, it actually
belongs with the inner if statement, as if it had been written:

int nl = 10;
if (nl > 11)
{
if (nl > 12)

466

10.

Appendix A

Il
o

nl

else

nl

Il
—

}

The outer if statement has no else clause and, thus, nl remains
unchanged.

Because the n1 is not less than 5, the body of the while() control is
never executed. In the case of the do...while() control, the body is
executed once even though nl is no less than 5. In this case, nl ends up
with a value of 11.

The difference between the two loops is that the do...while() always
executes its body at least once, even if the conditional clause is false
from the beginning.

double cube(double d)
{

return d * d * d;

}

Because the Intel processor in your PC handles integers and floating-
point variables differently, the machine code generated by the two func-
tions cube(int) and cube(double) are completely different.

The expression cube(3.0) matches the function cube(double); thus,
cube(double) is passed the double value 3.0 and returns the double
value 9.0, which is demoted to 9 and assigned to the variable n.
Although the result is the same, how you got there is different.

The compiler generates an error because the first cube(int) function and
the final function have identical names. Remember that the return type
is not part of the function’s full name.

Answers to Part Reviews 467

Saturday Afternoon Review Answers

1. class Student

{
public:
char szLastName[128];
int nGrade; // 1->first grade, 2->second grade, etc.
double dGPA;
}

2. void readAndDisplay()

{
Student s;

// input student information
cout << “Enter the student’s name:”;
cin.getline(s.szLastName);
cout << “Grade (1-> first grade, 2->second...)\n”;
cin > s.nGrade;

cout << “GPA:”;
cin > s.dGPA;

// output student info
cout << “\nStudent information:\n”;
cout << s.szlastName << “\n”;
cout << s.nGrade << “\n”;
cout << s.dGPA << “\n”;
}

3. void readAndDisplayAverage()

{
Student s;

// input student information

cout << “Enter the student’s name:”;
cin.getline(s.szLastName);

cout << “Grade (1-> first grade, 2->second...)\n”;
cin > s.nGrade;

cout << “GPA:”;

468 Appendix A

// enter in three GPAs to be averaged:

double dGrades[3];

cin > dGrade[0];

cin > dGradel[l];

cin > dGrade[2]

s.dGPA = (dGrade[0] + dGrade[1] + dGrade[2]) / 3;

// output student info

cout << “\nStudent information:\n”;
cout << s.szlastName << *“\n”;

cout << s.nGrade << “\n”;

cout << s.dGPA << *\n”;

4. a. 16 bytes (4 +4 +38)
b. 80 bytes (4 * 20)
c. 8 (4 +4) Remember that the size of a pointer is 4 bytes irrespective
of what it points at.
5. a. Yes.

b. It allocates memory from the heap but doesn't return it before exit-
ing (this is known as a memory leak).

c. Every time the function is called, another piece of memory is lost
until the heap is exhausted.

d. It may take quite awhile for the memory to be consumed. Such a
small memory leak may require executing the program for many
hours just to detect the problem.

6. dArray[0] is at 0x100, dArray[1] is at 0x108, and dArray[2] is at
0x110. The array stretches from 0x100 up to 0x118.

7. Assignment 1 has the same effect as dArray[1] = 1.0;. The second
assignment destroys the floating point value stored in dArray[2], but is
otherwise not fatal because a 4-byte integer value fits within the 8 bytes
allocated for a double.

8. LinkableClass* removeHead()

{
LinkableClass* pFirstEntry;
pFirstEntry = pHead;
if (pHead != 0)

Answers to Part Reviews 469

pHead = pHead->pNext;
}
return pFirstkEntry;
}

The removeHead () function first checks whether the head pointer is null.
If it is, then the list is already empty. If it is not, then removeHead()
stores the first entry locally in pFirstEntry. It then moves pHead down
to the next entry. Finally, the function returns pFirstEntry.

9. LinkableClass* returnPrevious(LinkableClass* pTarget)

{
// return a null if the Tist is empty
if (pHead == 0)
{
return 0;

// now iterate through the Tlist
LinkableClass* pCurrent= pHead;
while(pCurrent->pNext)
{
// if the next pointer of the current
// entry is equal to pTarget...
if (pCurrent->pNext == pTarget)
{
// ...then return pCurrent
return pCurrent;

// if we make it through the entire list without
// finding pTarget then return a null
return 0;

}

The returnPrevious() function returns the address of the entry in the
list immediately prior to *pTarget. The function begins by checking that
the linked list is not empty. If it is, then there is no previous entry and
the function returns a null.

470 Appendix A

returnPrevious() then iterates through the list each time saving the
address of the current entry in the variable pCurrent. On each pass
through the loop, the function checks whether pCurrent’s next pointer
points to pTarget. If it does, then the function returns pCurrent.

If returnPrevious() makes it all the way through the list without
finding pTarget, then it returns a null.

10. LinkableClass* returnTail()

{
// return the entry immediately prior to the
// end; i.e., return the entry whose next
// pointer is null.
return returnPrevious(0);

}
The entry immediately prior to the null is the last entry in the list.
Extra credit:

LinkableClass* removeTail()
{
// find the last entry in the Tist; if it’s null
// then the Tist is empty
LinkableClass* plLast = returnPrevious(0);
if (pLast == 0)
{
return 0;

// now find the entry that points to this last
// entry
LinkableClass* pPrevious = returnPrevious(plast);

// if pPrevious is null...

if (pPrevious == 0)

{
// ...then plast is the only entry;
// set the head pointer to null
pHead = 0;

}

else

{

Answers to Part Reviews 471

// ...otherwise, remove plLast from pPrevious
pPrevious->pNext = 0;

// either way, return the Tast pointer
return plast;
)

The removeTail() function removes the last entry in a linked list.

It begins by finding the address of the last entry by calling
returnPrevious(0). It stores this address in pLast. If pLast is null,
then the list is empty and the function returns a nu11 immediately.

Finding the last entry is not enough. To remove the last entry,
removeTail() must find the entry prior to pLast so that it can
unlink the two.

removeTail() finds the address of the entry prior to pLast by calling
returnPrevious(plLast). If there is no previous entry, then the list
must have only one entry. removeTail() zeros the appropriate next
pointer before returning pLast.

11. To demonstrate this solution, | used Visual C++ as a comparison to rhide.

I begin by executing the program just to see what happens. If the pro-
gram appears to work, | don't stop there, but I would like to know what
I'm up against. The results of entering the standard “this is a string” and
“THIS IS A STRING” inputs are shown below.

This program concatenates two strings
<{this version doesn’t work.>

Enter string #1:This is a string
Enter string #2:THIS IS A STRING

THI
Press any key to continue

Because I'm reasonably sure that the problem is in concatString(), |
set a breakpoint at the beginning of the function and start over. After
encountering the breakpoint, the target and source strings seem correct
as shown in Figure A-1.

472 Appendix A

coet 2 ThaT 4f EEStTingl af TwmC

maturs
1d concat3triaglchar® pezTarget har® paxSoure)

viaila{pezTarpet |
i
$pazTeraniss - *mazSourcoes

et | iz gl b . chas

H pezTargat IwdIGSECtl "this in & miraing”
| B praScarcs IeAlZI0 * -

Figure A-1
The initial Variables window displays both the source and destination
strings.

From the breakpoint, | begin to single-step. At first the local variables
demonstrated in the Variables window seem correct. As | head into the
while loop, however, it becomes immediately clear that the source string
is about to overwrite the target string; that is, the concatString()
function is more of an overwrite function.

The concatString() should have started by moving the pszTarget
pointer to the end of the target string before starting the transfer
process. This problem is not easily fixed in the debugger, so I go back and
add the extra code to move the pointer to the end of the target string.

Actually, it is possible to fix this problem with a little debugger
sleight-of-hand. In the locals display, click the value of the
pointer in the right hand column next to pszTarget. Whatever
value is there, add 0x10 (there are 16 characters in “this is a
string”). The pszTarget pointer now points to the end of the
target string and you can proceed with the transfer.

Answers to Part Reviews 473

The updated concatString() is as follows:

void concatString(char* pszTarget, char* pszSource)

{
// move pszTarget to the end of the source string
while(*pszTarget)
{

pszTarget++;

// tack the second onto the end of the first
while(*pszTarget)
{

*pszTarget++ = *pszSource++;

// terminate the string properly
*pszTarget = “\0’;
}
Replacing the breakpoint on the second whi e, the one that performs the
copy, | start the program over with the same “this is a string” inputs. The
local variables shown in Figure A-2 now appear correct.

PV ariabikes

Ciprimat: | concacivgiche = cha 1| |
B przScurce :':xnnq'rsn.‘n -

] Locals =
Figure A-2

pszTarget should point at a null before the copy takes place.

The pszTarget variables should point at the null at the end of
the source string before the program can copy the source string.

474

Appendix A

With confidence | attempt to step through the transfer while loop. As
soon as | press Step Over, however, the program steps over the loop
entirely. Apparently, the while condition is not true even on the first
pass through the loop. Reflecting for a moment, | realize that the condi-
tion is wrong. Rather than stop when pszTarget points to nul1, | should
be stopping when pszSource points to a nul1. Updating the while con-
dition as follows solves the problem:

while(*pszSource)

| start over again with the same inputs , and the debugger reveals that
all seems to be OK. At completion, the program displays the proper out-
put as well.

Saturday Evening Review Answers

1.

I find shirts and pants, which are subclasses garments, which are cloth-
ing. Also in the clothing chain are shoes and pairs of socks. The pairs of
socks can be further divided into pairs that match and those that don't
match and so on.

Shoes have at least one hole for the insertion of a foot. Shoes have some
type of restraint device to hold them on the foot. Shoes have some type
of covering on the bottom to protect the foot from the ground. That's
about all you can say about my shoes.

I have dress shoes and biking shoes. You can wear biking shoes to work,
but it is extremely difficult to walk in them. However, they do cover your
feet, and work would not come to a grinding halt.

By the way, | also have a special pair of combination shoes. These have
connections for bike pedals while retaining a conventional sole. Going to
work in these hybrid shoes wouldn't be that bad at all.

The constructor for a linked list object should make sure that the next
link points to a null when the object is constructed. It is not necessary to
do anything to the static data member.

class Link

{
static Link* pHead;
Link* pNextLink;

Answers to Part Reviews 475

Link()
{
pNextLink = 0;

b
The point is that the static element pHead cannot be initialized in the

constructor lest it be reinitialized each time a LinkedList object is
created.

5. The following is my version of the destructor and copy constructor.

// destructor - remove the object and
// remove the entry
~LinkedList()
{
// if the current object is in a Tlist...
if (pNext)
{
// ...then remove it
removeFromList();

// if the object has a block of memory...
if (pszName)
{
// ...return it to the heap
delete pszName;
}
pszName = 0;

// copy constructor - called to create a copy of
// an existing object
LinkedList(LinkedList& 1)
{
// allocate a block of the same size
// off of the heap
int nLength = strlen(1.pszName) + 1;
this->pszName = new char[nlLength];

// now copy the name into this new block

476 Appendix A

strcpy(this->pszName, 1.pszName);

// zero out the length as long as the object

// is not in a Tinked 1ist

pNext = 0;

}

If the object is a member of a linked list, then the destructor must
remove it before the object is reused and the pNext pointer is lost. In
addition, if the object “owns” a block of heap memory, it must be
returned as well. Similarly the copy constructor performs a deep copy
by allocating a new block of memory off of the heap to hold the object
name. The copy constructor does not add the object onto the existing
linked list (though it could).

Sunday Morning Review Answers

1. The output sequence is:

Advisor:student data member

Student

Advisor:student Tocal

Advisor:graduate data member

Graduate Student

Advisor:graduate student local

Let's step through the sequence slowly:

Control passes to the constructor for GraduateStudent and from there to
the constructor for the base class Student.

The data member Student::adv is constructed.

Control passes to the body of the Student constructor.

A local object of class Advisor is created from the heap.

Control returns to the GraduateStudent constructor which constructs
the data member GraduateStudent::adv.

Control enters the constructor for GraduateStudent which subsequently
allocates an Advisor object off of the heap.

Answers to Part Reviews

2. // PassProblem - use polymorphism to decide whether

// a student passes using different
// criteria for pass or fail
#include <stdio.h>

ffinclude <iostream.h>

class Student
{
public:
virtual int pass(double dGrade)
{
// if passing grade...
if (dGrade > 1.5)
{

// ...return a pass
return 1;
}
// ...otherwise return a fail
return 0;

b
class GraduateStudent : public Student
{
public:
virtual int pass(double dGrade)
{
if (dGrade > 2.5)
{
return 1;

}
return 0;

b
3. My version of the Checking class is as follows:
// Checking - same as a savings account except that
// withdrawals cost a dollar
class Checking : public CashAccount

{
public:

477

478 Appendix A

Checking(unsigned nAccNo,
float fInitialBalance = 0.0F)
: CashAccount(nAccNo, fInitialBalance)

// a savings account knows how to process

// withdrawals as well (don’t worry about overdrafts)
virtual void withdrawal(float fAmount)

{

// take out withdrawal
fBalance -= fAmount;

// now take out charge
fBalance -= 1;

The entire program is on the CD-ROM under the name
AbstractProblem.

4. My solution to the problem is:

// MultipleVirtual - create a PrinterCopier class by
/] inheriting a class Sleeper and
// a class Copier
#include <stdio.h>
#include <iostream.h>
class ElectronicEquipment
{
public:
ElectronicEquipment()
{
this->nVoltage = nVoltage;

}

int nVoltage;
Vs
class Printer : virtual public ElectronicEquipment

Answers to Part Reviews 479

public:
Printer() : ElectronicEquipment()
{
}
void print()
{
cout << “print\n”;

b
class Copier : virtual public ElectronicEquipment
{
public:
Copier() : ElectronicEquipment()
{
}
void copy()
{
cout << “copy\n”;

b
class PrinterCopier : public Printer, public Copier
{
public:
PrinterCopier(int nVoltage) : Copier(), Printer()
{
this->nVoltage = nVoltage;

int main(int nArgs, char* pszArgs)
{
PrinterCopier ss(220);

// first let’s print
ss.print();

// now let’s copy
ss.copy();

480 Appendix A

// now let’s output the voltage
cout << “voltage = “ << ss.nVoltage << *“\n”;

return 0;

Sunday Afternoon Review Answers

1. My version of the two functions are as follows:

MyClass(MyClass& mc)

| nValue = mc.nValue;
resource.open(nValue);

;yc1ass& operator=(MyClassé& s)

iesource.c]ose();

nValue = s.nValue;
resource.open(nValue);

}

The copy constructor opens the current object with the value of the
source object.

The assignment operator first closes the current resource because it was
opened with a different value. It then reopens the resource object with
the new value assigned it.

2. My class and inserter are as follows:

// Student - your typical beer-swilling undergraduate
class Student
{
friend ostream& operator<<(ostream& out, Student& d);
public:
Student(char* pszFName, char* pszLName, int nSSNum)
{
strncpy(szFName, pszFName, 20);
strncpy(szLName, pszLName, 20);

Answers to Part Reviews 481

this->nSSNum = nSSNum;

protected:
char szLName[20];
char szFName[20];
int nSSNum;

// inserter - output a string description
// (this version handles the case of cents
// less than 10)
ostream& operator<<(ostream& out, Student& s)
{
out << s.szLName
<L,
<< s.szFName
< (e
<< s.nSSNum
<L)
return out;

