
This appendix contains supplemental problems from different parts of the
book to give you additional practice in working with C++ and honing your
new skills. The problems are given below in one section divided by part

number; following is another section with answers to the problems.

Problems

Saturday Morning

1. Which of the following statements should:

a. generate no messages?

b. generate warnings?

c. generate errors?

1. int n1, n2, n3;

2. float f1, f2 = 1;

3. double d1, d2;

4. n1 = 1; n2 = 2; n3 = 3; f2 = 1;

5. d1 = n1 * 2.3;

6. n2 = n1 * 2.3;

7. n2 = d1 * 1;

APPENDIX

Supplemental Problems

B

4689-9 appB.f.qc 3/7/00 9:39 PM Page 483

Appendix B484

8. n3 = 100; n3 = n3 * 1000;

9. f1 = 200 * f2;

2. Given that n1 is equal to 10, evaluate the following:

a. n1 / 3

b. n1 % 3

c. n1++

d. ++n1

e. n1 %= 3

f. n1 -= n1

g. n1 = -10; n1 = +n1; what is n1?

3. What is the difference between the following for loops?

for(int i = 0; i < 10; i++)
{

// ...
}
for (int i = 0; i < 10; ++i)
{

// ...
}

4. Write the function int cube(int n), which calculates the n * n * n
of n.

5. Describe exactly what happens in the following case using the function
written in problem 1?

int n = cube(3.0);

6. The following program demonstrates a very crude function that calculates
the integer square root of a number by repetitively comparing the square
to the actual value. In other words, 4 * 4 = 16, therefore the square root
of 16 is 4. This function reckons that 3 is the square root of 15 because
3 * 3 is less than 15 but 4 * 4 is greater than 15.

However, the program generates unexpected results. Fix it!

// Lesson - this function demonstrates a crude but
// effective method for calculating a
// square root using only integers.
// This version does not work.
#include <stdio.h>
#include <iostream.h>

4689-9 appB.f.qc 3/7/00 9:39 PM Page 484

Supplemental Problems 485

// squareRoot - given a number n, return its square
// root by calculating nRoot * nRoot
// for ever increasing values of
// nRoot until n is surpassed.
void squareRoot(int n)
{

// start counting at 1
int nRoot = 1;

// loop forever
for(;;)
{

// check the square of the current
// value (and increment to the next)
if ((nRoot++ * nRoot) > n)
{

// close as we can get, return
// what we’ve got
return nRoot;

}
}

// shouldn’t be able to get here
return 0;

}

// test the function squareRoot() with a
// single value (a much more thorough test
// would be required except that this already
// doesn’t work)
int main(int argc, char* pszArgs[])
{

cout << “This program doesn’t work!\n”;

cout << “Square root of “
<< 16
<< “ is “
<< squareRoot(16)
<< “\n”;

4689-9 appB.f.qc 3/7/00 9:39 PM Page 485

Appendix B486

return 0;
}

Hint: Be very wary of the autoincrement feature, as well as the postincre-
ment feature.

Saturday Afternoon

1. The C++ library function strchr() returns the index of a given character
in a string. For example, strchr(“abcdef”, ‘c’) returns 2. strchr()
returns a –1 if the character does not exist anywhere within the string.

Write myStrchr() which works the same as strchr().

When you think that your function is ready, execute it against the
following:

// MyStrchr - search a given character within
// a string. Return the index of
// of the result.
#include <stdio.h>

#include <iostream.h>

// myStrchr - return the index of a test
// character in a string. Return
// a -1 if the character not found.
int myStrchr(char target[], char testChar);

// test the myStrchr function with different
// string combinations
void testFn(char szString[], char cTestChar)
{

cout << “The offset of “
<< cTestChar
<< “ in “
<< szString
<< “ is “
<< myStrchr(szString, cTestChar)
<< “\n”;

}

4689-9 appB.f.qc 3/7/00 9:39 PM Page 486

Supplemental Problems 487

int main(int nArgs, char* pszArgs[])
{

testFn(“abcdefg”, ‘c’);
testFn(“abcdefg”, ‘a’);
testFn(“abcdefg”, ‘g’);
testFn(“abcdefc”, ‘c’);
testFn(“abcdefg”, ‘x’);

return 0;
}

Hint: Make sure that you do not run off the end of the string in the
event that you don’t find the desired character.

2. Although the following is bad programming, this mistake may not cause
problems. Please explain why problems might not be caused.

void fn(void)
{

double d;
int* pnVar = (int*)&d;
*pnVar = 10;

}

3. Write a pointer version of the following displayString(). Assume that
this is a null terminated string (don’t pass the length as an argument to
the function).

void displayCharArray(char sArray[], int nSize)
{

for(int i = 0; i< nSize; i++)
{

cout << sArray[i];
}

}

4. Compile and execute the following program. Explain the results:

#include <stdio.h>
#include <iostream.h>

// MyClass - a meaningless test class
class MyClass
{

4689-9 appB.f.qc 3/7/00 9:39 PM Page 487

Appendix B488

public:
int n1;
int n2;

};

int main(int nArg, char* nArgs[])
{

MyClass* pmc;
cout << “n1 = “ << pmc->n1

<< “;n2 = “ << pmc->n2
<< “\n”;

return 0;
}

Sunday Morning

1. Write a class Car that inherits from the class Vehicle and that has a
Motor. The number of wheels is specified in the constructor to the class
Vehicle and the number of cylinders specified in the constructor for
Motor. Both of these values are passed to the constructor for the
class Car.

Answers

Saturday Morning

1. 1. No problem.

2. No warning: you can initialize however you like.

3. Nope.

4. Nothing here.

5. No problem: n1 is automatically promoted to a double in order to
perform the multiplication. Most compilers will not note this con-
version.

6. n1 * 2.3 results in a double. Assigning this back to an int results
in a demotion warning.

4689-9 appB.f.qc 3/7/00 9:39 PM Page 488

Supplemental Problems 489

7. Similar to 6. Although 1 is an int, d1 is a double. The result is a
double that must be demoted.

8. No warning but it doesn’t work. The result is beyond the range of
an int.

9. This should generate a warning (it does under Visual C++ but not
under GNU C++). The result of multiplying an int times a float is
a double (all calculations are performed in double precision). This
must be demoted to be assigned to a float.

2. a. 3

Round off error as described in Session 5 converts the expected 3.3
to 3.

b. 1

The closest divisor to 10 / 3 is 3 (same as 1a). 10 – (3 * 3) is 1, the
remainder after division.

c. 10

n1++ evaluates to the value of the variable before it is incremented.
After the expression is evaluated, n1 = 11.

d. 11

++n increments the value of the variable before it is returned.

e. 1

This is the same as n1 = n1 % 3

f. 0

This is the same as n1 = n1 - n1. n1 - n1 is always zero.

g. –10

The unary plus (+) operator has no effect. In particular, it does not
change the sign of a negative number.

3. No difference.

The increment clause of the if statement is considered a separate expres-
sion. The value of i after a preincrement or a postincrement is the same
(it’s only the value of the expression itself that is different).

4. int cube(int n)

{
return n * n * n;

}

4689-9 appB.f.qc 3/7/00 9:39 PM Page 489

Appendix B490

5. The double 3.0 is demoted to the integer 3 and the result is returned
from cube(int) as the integer 9.

6. Error #1: The program doesn’t compile properly because the function
squareRoot() has been declared as returning a void. Change the return
type to int and rebuild.

Error #2: The program now figures that the square root of 16 is 6! To sort
out the problem, I break the compound if in two so that I can output
the resulting value:

// loop forever
for(;;)
{

// check the square of the current
// value (and increment to the next)
int nTest = nRoot++ * nRoot;
cout << “Test root is “

<< nRoot
<< “ square is “
<< nTest
<< “\n”;

if (nTest > n)
{

// close as we can get, return
// what we’ve got
return nRoot;

}
}

The result of executing the program is shown below.

This program doesn’t work!
Test root is 2 square is 1
Test root is 3 square is 4
Test root is 4 square is 9
Test root is 5 square is 16
Test root is 6 square is 25
Square root of 16 is 6

The program output is not correct at all; however, careful examination
reveals that the left side is one off. Thus, the square of 3 is 9, but the
displayed value of nRoot is 4. The square of 4 is 16 but the displayed
value of nRoot is 5. By incrementing nRoot in expression, nRoot is one

4689-9 appB.f.qc 3/7/00 9:39 PM Page 490

Supplemental Problems 491

more than the nRoot actually used in the calculation. Thus, nRoot needs
to be incremented after the if statement.

The new squareRoot() function becomes

// loop forever
for(;;)
{

// check the square of the current
// value (and increment to the next)
int nTest = nRoot * nRoot;
cout << “Test root is “

<< nRoot
<< “ square is “
<< nTest
<< “\n”;

if (nTest > n)
{

// close as we can get, return
// what we’ve got
return nRoot;

}

// try the next value of nRoot
nRoot++;

}

The autoincrement has been moved until after the test (the autoincre-
ment always looked fishy where it was). The output of the new, improved
program is shown below.

This program doesn’t work!
Test root is 1 square is 1
Test root is 2 square is 4
Test root is 3 square is 9
Test root is 4 square is 16
Test root is 5 square is 25
Square root of 16 is 5

The square is being calculated, but for some reason the function doesn’t
stop when nRoot is equal to 4. After all, 4 * 4 == 16. This is exactly the
problem — the comparison is for nTest > n when it should be nTest >= n.
The corrected program generates the desired result as shown below.

4689-9 appB.f.qc 3/7/00 9:39 PM Page 491

Appendix B492

This program works!
Test root is 1 square is 1
Test root is 2 square is 4
Test root is 3 square is 9
Test root is 4 square is 16
Square root of 16 is 4

After checking several other values, I convince myself that the function
does work and I remove the output statements.

Saturday Afternoon

1. The following MyStrchr represents my solution to the problem:

// myStrchr - return the index of a test
// character in a string. Return
// a -1 if the character not found.
int myStrchr(char target[], char testChar)
{

// loop through the character string;
// stop if we hit the end of the string
int index = 0;
while(target[index])
{

// if the current member of the
// string matches the target
// character...
if (target[index] == testChar)
{

// ...then exit
break;

}

// skip to the next character
index++;

}

// if we ended up at the end of the
// string without encountering the
// character...

4689-9 appB.f.qc 3/7/00 9:39 PM Page 492

Supplemental Problems 493

if (target[index] == ‘\0’)
{

// ...return a -1 rather than
// the length of the array
index = -1;

}

// return the index calculated
return index;

}

The actual myStrchr() function begins by iterating through the
string target stopping when the current character, referenced by
target[index], is equal to 0 meaning that the program has reached
the end of the string. This test safeguards that the function doesn’t
go too far if the test character is not encountered.

Within this loop, the program compares the current character to the
desired character contained in testChar. If the character is found, the
function exits the loop prematurely.

Once outside the loop, the program terminated either because the end of
the string was encountered or because it found the desired character. If
the end of the string was the reason for exit then target[index] will
equal 0, or ‘\0’ to use the character equivalent. In that case, index is
forced to –1.

The resulting index is returned to the caller.

The result of executing this program is shown below.

The offset of c in abcdefg is 2
The offset of a in abcdefg is 0
The offset of g in abcdefg is 6
The offset of c in abcdefg is 2
The offset of x in abcdefg is –1
Press any key to continue

The above program could have been simplified by simply exiting from
within the loop if the character were found:

int myStrchr(char target[], char testChar)
{

// loop through the character string;
// stop if we hit the end of the string
int index = 0;

4689-9 appB.f.qc 3/7/00 9:39 PM Page 493

Appendix B494

while(target[index])
{

// if the current member of the
// string matches the target
// character...
if (target[index] == testChar)
{

// ...then return the index
return index;

}

// skip to the next character
index++;

}

// if we exited the loop then we must
// have encountered the end without
// finding the desired character
return -1;

}

If the target character is found, the index value is returned immediately.
If control exits the loop, it can only mean that the end of the string was
encountered without finding the desired character.

Personally, I find this style more straightforward; however, some organi-
zations have a rule against multiple returns in a single function.

2. A double occupies 8 bytes whereas an int occupies only 4 bytes. It’s
entirely possible that C++ would use 4 of the 8 bytes to store the integer
10, leaving the other 4 bytes unused. This would not cause an error; how-
ever, you should not assume that your compiler would work this way.

3. void displayString(char* pszString)

{
while(*pszString)
{

cout << *pszString;
pszString++;

}
}

4689-9 appB.f.qc 3/7/00 9:39 PM Page 494

Supplemental Problems 495

4. The output of pmc->n1 and pmc->n2 are garbage because the pointer
pmc was not initialized to point to anything. In fact, the program might
abort without generating any output due to a bad pointer.

Sunday Morning

1. class Vehicle

{
public:
Vehicle(int nWheels)
{
}

};

class Motor
{
public:
Motor(int nCylinders)
{
}

};

class Car : pubic Vehicle
{
public:
Car(int nCyliners, int nWheels)
: Vehicle(nWheels), motor(nCylinders)

{
}

Motor motor;
};

4689-9 appB.f.qc 3/7/00 9:39 PM Page 495

4689-9 appB.f.qc 3/7/00 9:39 PM Page 496

