
Session Checklist

✔ Creating your first C++ program using Visual C++
✔ Building your C++ source statements into an executable program
✔ Executing your program
✔ Getting help when programming

Chapter 1 looked at how you might program a human. This chapter and the
next describe how to program a computer in C++. This chapter centers on
writing programs in Visual C++, while the next concentrates on the public

domain GNU C++, which is contained on the enclosed C++ Weekend Crash Course
CD-ROM.

Don’t get too worried about the designation Visual C++ or GNU
C++. Both compilers represent true implementations of the C++
standard language. Either compiler can compile any of the pro-
grams in this book.

The program we are about to create converts a temperature entered by the user
from degrees Celsius to degrees Fahrenheit.

Note

S E S S I O N

Creating Your First C++
Program in Visual C++

2

4689-9 ch02.f.qc 3/7/00 9:19 PM Page 11

Installing Visual C++

You need to install the Visual C++ package on your computer before you can write
a Visual C++ program. The Visual C++ package is used to write your C++ programs
and to convert them to .EXE programs that the computer can understand.

Visual C++ does not come with this book. You need to purchase
Visual C++ separately, either as a part of the entire Visual Studio
package or on its own. The very capable GNU C++ compiler is
included.

Consult Appendix A if you need help installing Visual C++.

Creating Your First Program

A C++ program begins life as a text file containing the C++ instructions. I will lead
you step-by-step through this first program.

Start the Visual C++ package. For Visual Studio 6.0, click Start followed by
Programs and the Microsoft Visual Studio 6.0 menu options. From there, select
Microsoft Visual C++ 6.0.

Visual C++ should start with two empty windows labeled Output and WorkSpace.
If other windows appear or Output or WorkSpace is not empty, then someone has
been using your Visual C++ on your machine. To close out whatever they were
doing select File followed by Close Workspace.

Create an empty text file by clicking on the small New Text File icon at the left
of the menu bar as shown in Figure 2-1.

Don’t worry too much about indentation — it isn’t critical
whether a given line is indented two spaces or three spaces;
case, however, is critical. C++ does not consider “Cheat” and
“cheat” to be the same word.

(You can cheat and copy the Conversion.cpp file contained on the
accompanying CD-ROM.)

CD-ROM

Tip

Note

Friday Evening12

4689-9 ch02.f.qc 3/7/00 9:20 PM Page 12

Figure 2-1
You begin writing your C++ program by using the New Text File button to
create an empty text file.

Enter the following program exactly as written below.

//
// Program to convert temperature from Celsius degree
// units into Fahrenheit degree units:
// Fahrenheit = Celsius * (212 - 32)/100 + 32
//
#include <stdio.h>
#include <iostream.h>
int main(int nNumberofArgs, char* pszArgs[])
{

// enter the temperature in Celsius
int nCelsius;
cout << “Enter the temperature in Celsius:”;
cin > nCelsius;

// calculate conversion factor for Celsius
// to Fahrenheit
int nFactor;
nFactor = 212 - 32;

// use conversion factor to convert Celsius
// into Fahrenheit values

Session 2 — Creating Your First C++ Program in Visual C++ 13

Part I–Friday Evening
Session 2

4689-9 ch02.f.qc 3/7/00 9:20 PM Page 13

int nFahrenheit;
nFahrenheit = nFactor * nCelsius/100 + 32;

// output the results
cout << “Fahrenheit value is:”;
cout << nFahrenheit;

return 0;
}

Save the file under the name Conversion.cpp. The default directory is in one of
the Visual Studio folders. I prefer to navigate to a folder that I created in a more
convenient spot before saving the file.

Building Your Program

We used a limited set of commands in Session 1 to instruct the human computer in
changing the tire of a car. Although restricted, even these instructions were under-
standable to the average human (at least the average English-speaking human).

The Conversion.cpp program you just entered contains C++ statements, a lan-
guage that doesn’t look much like anything you would read in the morning paper.
As cryptic and crude as these C++ commands might appear to be, the computer
understands a language much more basic than even C++. The language your com-
puter processor understands is known as machine language.

The C++ compiler converts your C++ program into the machine language of
the microprocessor CPU in your PC. Programs you can execute from the Programs
option of the Start menu, including Visual C++ itself, are nothing more than files
consisting of these machine instructions.

It is possible to write a program directly in machine language,
but it is much more difficult to do than it is to write the same
program in C++.

The primary job of your Visual C++ package is to convert your C++ program into
an executable file. The act of creating an executable .EXE is known as building. The
build process is also known as compiling (there is a difference, but it is not rele-
vant at this point). That part of the C++ package that performs the actual build
process is known as the compiler.

Note

Friday Evening14

4689-9 ch02.f.qc 3/7/00 9:20 PM Page 14

To build your Conversion.cpp program, click the Build menu item under the
Build menu option. (No, I was not stuttering.) Visual C++ responds by warning
you that you have yet to create a Workspace, whatever that is. This is shown in
Figure 2-2.

Figure 2-2
A workspace is required before Visual C++ can build your program.

Click Yes to create a Workspace file and to continue the build process.

The .cpp source code file is nothing more than a text file, similar
to what you would build using Notepad. The Conversion.pdw
Workspace that Visual C++ creates is a file in which Visual C++
can save special information about your program, information
that will not fit anywhere in the Conversion.cpp file.

After a few minutes of frantic disk activity, Visual C++ responds with a pleasant
bell ring sound, which indicates that the build process is complete. The output
window should contain a message similar to that shown in Figure 2-3, indicating
that Conversion.exe was created with 0 errors and 0 warnings.

Note

Session 2 — Creating Your First C++ Program in Visual C++ 15

Part I–Friday Evening
Session 2

4689-9 ch02.f.qc 3/7/00 9:20 PM Page 15

Figure 2-3
The “0 errors 0 warnings” message in the Output window indicates a
successful build.

Visual C++ generates an unpleasant buzz if it detects anything wrong during
the build process (at least, Microsoft thinks it’s unpleasant — I’ve heard it so many
times, it’s starting to grow on me). In addition, the output window contains an
explanation of what Visual C++ found wrong.

I removed a semicolon at the end of one of the lines in the program and
recompiled just to demonstrate the error reporting process. The result is shown
in Figure 2-4.

The error message displayed in Figure 2-4 is actually quite descriptive. It accu-
rately describes the problem (“missing ; . . .”) and the location (line 18 of the file
Conversion.cpp). I replaced the semicolon and rebuilt the program to solve the
problem.

Not all error messages are quite as clear as this one. Many times
a single error can create a number of error messages. At first,
these error messages seem confusing. Over time, however, you
get a feel for what Visual C++ is “thinking” during the build
process and what might be confusing it.

Note

Friday Evening16

4689-9 ch02.f.qc 3/7/00 9:20 PM Page 16

Figure 2-4
Visual C++ reports errors found during the build process in the Output
window.

You will undoubtedly hear the unpleasant buzz of an error
detected by Visual C++ before you eventually get Conversion.cpp
entered correctly. Should you never get the code entered in a way
that Visual C++ approves, you may copy the Conversion.cpp file
from xxx\Session 5\Conversion.cpp of the enclosed CD-ROM.

Note

Session 2 — Creating Your First C++ Program in Visual C++ 17

Part I–Friday Evening
Session 2

C++ Error Messages

Why are all C++ packages, including Visual C++, so picky when it comes to
C++ syntax? If Visual C++ can figure out that I left off a semicolon, why
can’t it just fix the problem and go on?

The answer is simple but profound. Visual C++ thinks that you left off a
semicolon. I could have introduced any number of errors that Visual C++
might have misdiagnosed as a missing semicolon. Had the compiler simply
“corrected” the problem by introducing a semicolon, Visual C++ would
have masked the real problem.

Continued

4689-9 ch02.f.qc 3/7/00 9:20 PM Page 17

Executing Your Program

You can execute the successfully built Conversion.exe by clicking Execute
Conversion.exe item under the Build menu. Alternatively, you can press Ctrl+F5.

Avoid using the Go menu command or the equivalent F5 key
for now.

Visual C++ opens a program window similar to that shown in Figure 2-5,
requesting a temperature in degrees Celsius.

Enter a temperature, such as 100 degrees. After pressing Enter, the program
responds with the equivalent measurement in degrees Fahrenheit as shown in
Figure 2-6. The “Press any key to terminate” message jammed up against the tem-
perature output is not aesthetically pleasant, but the converted temperature is
unmistakable — we fix this blemish in Chapter 5.

Note

Friday Evening18

C++ Error Messages Continued

As you will see, finding an error buried in a program that builds without
error is difficult and time consuming. It is far better to let the compiler
find the error, if possible.

This lesson was hard in coming. Early in the days of computing, compilers
tried to detect and correct any error that they could find. This sometimes
reached ridiculous proportions.

My friends and I loved to torture one “friendly” compiler in particular by
entering a program containing nothing but the existential question of the
ages IF. (In retrospect, I guess my friends and I were nerdy.) Through a
series of tortured gyrations, this particular compiler would eventually cre-
ate an involved command line from this single word that would build suc-
cessfully. I know that the compiler misunderstood my intent with the
word IF because I didn’t intend a single thing.

In my experience, almost every single time the compiler tried to “fix”
my program, it was wrong. Although misguided, fixing the program was
harmless if the compiler reported the error before fixing it. Compilers that
corrected errors without reporting them did much more harm than good.

4689-9 ch02.f.qc 3/7/00 9:20 PM Page 18

Figure 2-5
The Conversion.exe program begins by requesting a temperature to convert.

Figure 2-6
The Conversion.exe program waits for user input after the program
terminates.

The “Press any key to terminate” prompt gives the user time to
read the program output before closing the window after the pro-
gram terminates. This message does not appear when using the
Go command available through the F5 key.

Congratulations! You have just entered, built, and executed your first program.

Tip

Session 2 — Creating Your First C++ Program in Visual C++ 19

Part I–Friday Evening
Session 2

4689-9 ch02.f.qc 3/7/00 9:20 PM Page 19

Closing Points

There are two points worth noting before continuing. First, the form of the pro-
gram output from Conversion.exe might surprise you. Second, Visual C++ offers
a lot more help than just build error messages.

Program output

Windows programs have a very visually oriented, windows-based output.
Conversion.exe is a 32-bit program that executes under Windows, but it is not a
“Windows” program in the visual sense.

If you don’t know what is meant by the phrase “32-bit program,”
don’t worry about it.

As I pointed out in the introduction, this is not a book about writing Windows
programs. The basic C++ programs that you write in this book have a command line
interface executing within a DOS box.

Budding Windows programmers should not despair — you did not waste your
money. Learning C++ is a prerequisite to writing Windows programs.

Visual C++ help

Visual C++ offers a help system that gives significant support to the C++ program-
mer. To see how this help works, double-click on the word #include until it is
completely highlighted. Now press F1.

Visual C++ responds by opening the MSDN Library and displaying an entire page
of information about #include as shown in Figure 2-7 (you probably don’t under-
stand all of what it’s saying, but you soon will).

You can find the same information by selecting Index. . . under the Help menu.
Enter #include in the index window which appears to reveal the same information.

As you grow as a C++ programmer, you will rely more and more on the MSDN
Library help system.

Note

Friday Evening20

4689-9 ch02.f.qc 3/7/00 9:20 PM Page 20

Figure 2-7
The F1 key provides significant help to the C++ programmer.

REVIEW

Visual C++ 6.0 has a user-friendly environment in which you can create and test
your programs. You use the Visual C++ editor to enter your program’s source code.
Once entered, your C++ statements are converted into an executable file through a
building process. Finally, you can execute your completed program from within
Visual C++.

In the next chapter, we look at how we to create the same program using the GNU
C++ compiler, which is found on the accompanying CD-ROM. If you are definitely
committed to Visual C++, you may want to skip ahead to Session 4, which explains
exactly how the program you just entered works.

QUIZ YOURSELF

1. What kind of file is a C++ source program? (That is, is it a Word file? An
Excel spreadsheet file? A text file?) (See the first paragraph of Creating
Your First Program.)

2. Does C++ care about indention? Does it care about case? (See Creating
Your First Program.)

Session 2 — Creating Your First C++ Program in Visual C++ 21

Part I–Friday Evening
Session 2

4689-9 ch02.f.qc 3/7/00 9:20 PM Page 21

3. What does “building your program” mean? (See Building Your Program.)

4. Why does C++ generate error messages? Why can’t it just try to make
sense out of what I enter? (See the C++ Error Messages sidebar.)

Friday Evening22

4689-9 ch02.f.qc 3/7/00 9:20 PM Page 22

