30 Min.
To Go

SESSION

C++ Instructions

Session Checklist

0 Reviewing the Conversion program from Sessions 2 and 3
0 Understanding the parts of a C++ program
0 Introducing common C++ commands

was to learn the C++ environment (whichever environment you chose) rather

than learn how to program. This session analyzes the Conversion.cpp program.
You will see exactly what each part of the program does and how each part con-
tributes to the overall solution.

I n Sessions 2 and 3, you were asked to enter a C++ program by rote. The idea

The Program

Listing 4-1 is the Conversion.cpp program (again) except that it is annotated by
commenting features which I describe in the remainder of the lesson.

Friday Evening

There are several aspects to this program that you have to take
on faith, at least for now. Be patient. Every structure found in
this program is explained in time.

This version has extra comments....

Listing 4-1
Conversion.cpp
//
// Conversion - convert temperature from Celsius
// degree units into Fahrenheit degree
/1 units:
!/ Fahrenheit = Celsius * (212 - 32)/100 + 32
/]
#include <stdio.h> // framework

f#include <iostream.h>
int main(int nNumberofArgs, char* pszArgs[])
{

// here is our first statement

// it’s a declaration

int nCelsius;

// our first input/output statements
cout << “Enter the temperature in Celsius:”;
cin > nCelsius;

// the assignment marks a calculation expression
int nFactor;
nFactor = 212 - 32;

// an assignment using an expression containing
// variables

int nFahrenheit;

nFahrenheit = nFactor * nCelsius/100 + 32;

// output the results

Session 4—C++ Instructions

cout << “Fahrenheit value is:”;
cout << nFahrenheit;

return 0;

The C++ Program Explained

Our Human Program back in Session 1 consisted of a sequence of commands.
Similarly, a C++ program consists of a sequence of C++ statements that the com-
puter processes in order. These statements fall into a series of broad types. Each
of these is described here.

The basic program framework

Every program written in C++ begins with the same basic framework:

#include <stdio.h>
f#include <iostream.h>
int main(int nNumberofArgs, char* pzArgs[])
{
...your code goes here...
return 0;

}

You don't need to worry too much about the details of this framework — these
details will come later—but you should have some idea of what they're about. The
first two lines are called include statements because they cause the contents of
the named file to be included at that point in the program. We'll just consider
them magic at this point.

The next statement in every framework is the int main(...) statement. This
is followed by an open and closed brace. Your programs are written within these
braces. Execution of the program begins at the open brace and ends at the return
statement, which immediately precedes the closed brace.

Unfortunately, a more detailed explanation of this framework must be left to
future chapters. Don't worry . . . we get to it before the weekend is out.

7 UOISSaS
Buiuang Aepli4—| Jred

20 Min.
To Go

Friday Evening

Comments

The first few lines of the program appear to be free form text. Either this “code”
was meant for human eyes or the computer is a lot smarter than anyone’s ever
given it credit for being. These first six lines are known as comments. A comment
is a line or portion of a line that is ignored by the C++ compiler. Comments enable
the programmer to explain what he or she was doing or thinking while writing a
particular segment of code.

A C++ comment begins with a double slash (“//”) and ends with a newline. You
can put any character you want in a comment. A comment may be as long as you
want, but it is customary to keep comments to 80 characters or so, because that’s
all that will fit on the computer screen.

A newline would have been known as a “carriage return” back in the days of
typewriters, when the act of entering characters into a machine was called “typing”
and not “keyboarding.” A newline is the character that terminates a command line.

C++ allows a second form of comment in which everything appearing after a /*
and before a */ are ignored; however, this form of comment is not normally used
in C++ anymore.

It may seem odd to have a command in C++, or any other pro-
gramming language, which is ignored by the computer. However,
all computer languages have some version of the comment. It is
Note critical that the programmer explain what was going through her
or his mind at the time that the code was written. It may not be
obvious to the next person who picks up the program and uses

it or modifies it. In fact, after only a few months it may not be
obvious to the programmer what he or she meant.

Use comments early and often.

There’s that framework again

The next four lines represent that framework | mentioned earlier. Remember that
the program begins executing with the first statement after the open brace.

Session 4—C++ Instructions

Statements

The first noncomment line after the brace is a C++ statement. A statement is a sin-
gle set of commands. All statements other than comments end with a semicolon (;).
(There is a reason that comments don’t, but it's obscure. To my mind, comments
should end in a semicolon as well, for consistency’s sake if for no other reason.)

As you look through the program, you can see that spaces, tabs, and newlines
appear throughout the program. In fact, | have placed a newline after every state-
ment in this program. These characters are collectively known as white space
because you can't see any of them on the monitor. A white space is a space, a
tab, a vertical tab, or a newline. C++ ignores white space.

7 UOISSaS
Buiuang Aepli4—| Jred

You may add white space anywhere you like in your program to
enhance readability, except in the middle of a word.

While C++ may ignore white space, it does not ignore case. The variable ful1-
speed and the variable Ful1Speed have nothing to do with each other. While the
command int may be understood completely, C++ has no idea what INT means.

Declarations

The line int nCelcius; is a declaration statement. A declaration is a statement
that defines a variable. A variable is a “holding tank” for a value of some type.
A variable contains a value, such as a number or a character.

The term variable stems from algebra formulae of the following type:

x =10
y =3*X

In the second expression, y is set equal to 3 times x, but what is x? The variable x
acts as a holding tank for a value. In this case, the value of x is 10, but we could
have just as well set the value of x to 20 or 30 or —1. The second formula makes
sense no matter what the value of x.

In algebra, it's allowed to begin with a statement such as x = 10. In C++, the
programmer must first define the variable x before it can be used.

In C++, a variable has a type and a name. The line int nCelcius; declares an
variable nCelcius designed to hold an integer. (Why they couldn’t have just said
integer instead of int, I'll never know. It's just one of those things that you learn
to live with.)

10 Min.
To Go

Friday Evening

The name of a variable has no particular significance to C++. A variable must
begin with a letter (‘A" through ‘Z' or ‘a’ through ‘2’). All subsequent characters
must be a letter, a digit ('0’ to '9’), or an underscore (‘_"). Variable names can be
as long as you want to make them within reason.

There actually is a limitation but it's much larger than the
reader’s. Don't exceed what the reader can comfortably
remember — 20 characters or so.

By convention, variable names begin with a lowercase letter. Each
new word in a variable begins with a capital as in myVariable. |
explain the significance of the n in nCelsius in Session 5.

Try to make variable names short but descriptive. Avoid names
like x because x has no meaning. A variable name such as
lengthOfLineSegment is much more descriptive.

Input/output

The lines beginning with cout and cin are known as input/output statements,
often contracted to 1/0 statements. (Like all engineers, programmers love contrac-
tions and acronyms.)

The first 1/0 statement says output the phrase “Enter the temperature in
Celsius:” to cout (pronounced “see-out™). cout is the name of the standard C++
output device. In this case, the standard C++ output device is your monitor.

The next line is exactly the opposite. This line says to extract a value from the
C++ input device and store it in the integer variable nCelsius. The C++ input
device is normally the keyboard. This is the C++ analogue to the algebra formula x
= 10 mentioned above. For the remainder of the program, the value of nCelsius is
whatever the user enters here.

Expressions

In the next two lines, which are marked as a “calculation expression,” the program
declares a variable nFactor and assigns it the value resulting from a calculation.
This command calculates the difference of 212 and 32. In C++, such a formula is
called an expression.

Done!

Session 4—C++ Instructions

An operator is a command that generates a value. The operator in this calcula-
tion is *-".
An expression is a command that has a value. The expression here is “212 — 32"

Assignment

The spoken language can be very ambiguous. The term equals is one of those
ambiguities.

The word equals can mean that two things have the same value as in 5 cents
equals a nickel. Equals can also imply assignment as in math when you say that
y equals 3 times x.

To avoid ambiguity, C++ programmers call = the assignment operator.

The assignment operator says store the results of the expression on the right
of the = in the variable to the left. Programmers say that nFactor is assigned the
value 212 — 32.

Expressions (continued)

The second expression in Conversion.cpp presents a slightly more complex expres-
sion than the first. This expression uses the same mathematical symbols: * for
multiplication, / for division, and + for addition. In this case, however, the calcu-
lation is performed on variables and not simply constants.

The value contained in the variable nFactor (calculated immediately prior, by
the way) is multiplied by the value contained in nCelcius (which was input from
the keyboard). The result is divided by 100 and summed with 32. The result of the
total expression is assigned to the integer variable nFahrenheit.

The final two commands output the string “Fahrenheit value is:” to the display
followed by the value of nFahrenheit.

REVIEW

You have finally seen an explanation of the Conversion program entered in
Sessions 2 and 3. Of necessity, this explanation has been at a high level. Don’t
worry, however; the details are forthcoming.

e All programs begin with the same framework.

e C++ allows you to include comments that are explanations to yourself and
others as to what different parts of a program do.

7 UOISSaS
Buiuang Aepli4—| Jred

Friday Evening

e C++ expressions look a lot like algebraic expressions, except that C++ vari-
ables have to be declared before they can be used.

= is called assignment.

C++ input and output statements default to the keyboard and the screen or
MS-DOS window.

QuiZ YOURSELF

1. What does the following C++ statement do? (See Comments.)
// 1’m lost

2. What does the following C++ statement do? (See Declarations.)
int nQuizYourself; // help me out here

3. What does the following C++ statement do? (See Input/Output.)

cout << “Help me out here”;

4. What does the following C++ statement do? (See Expressions.)

nHelpMeOutHere = 32;

