
Session Checklist

✔ Declaring variables
✔ Dealing with the limitations of an integer variable
✔ Using floating point variables
✔ Declaring and using other variable types

One problem with the Conversion program from Part I is that it deals only
with integers. This integer limitation is not a problem for daily use — it
is unlikely that someone would enter a fractional temperature such as

10.5___A worse problem is conversion round off. Most integer Celsius values con-
vert to a fractional Fahrenheit reading. The Conversion program takes no heed of
this — it simply lops off the fractional part without any warning.

It may not be obvious, but this program had to be carefully writ-
ten to minimize the effect that the rounding off of fractions
would have on the output.

This chapter examines the limitations of integer variables. It
goes on to examine other variables types, including those designed to limit round-
ing-off error, and to look at the advantages and disadvantage of each.

Note

S E S S I O N

Variable Types

5

4689-9 ch05.f.qc 3/7/00 9:23 PM Page 51

Decimal Numbers

Integers are the counting numbers that you are most accustomed to: 1, 2, 3, and
so on plus the negative numbers –1, –2, –3, and so on. Integers are most useful in
our everyday life; however, they cannot easily express fractions. Integer fractional
values such as 2⁄3 or 15⁄16 or 3111⁄126 are clumsy to work with. It is difficult to compare
two fractional numbers if their denominator is not the same. For example, when
working on the car, I have a hard time knowing which bolt is larger — 3⁄4 or 25⁄32

(it’s the latter).

I have been told, but I cannot prove, that the problem of integer
fractions is what leads to the otherwise inexplicable prominence
of 12 in everyday life. Twelve is the smallest integer that is
divisible by 4, 3, and 2. One-fourth of a unit is accurate enough
for most purposes.

The creation of decimal fractions proved to be a great improvement. It is clear
that 0.75 is less than 0.78 (these are the same values as earlier, expressed as deci-
mal values). In addition, floating-point math is much easier because there is no
need to find least-common denominators and other such nonsense.

The limitations of int’s in C++

The variable type int is the C++ version of an integer. Variables of type int suffer
the same limitations that their counting integer equivalents in math do.

Integer round off

Reconsider the problem of calculating the average of three numbers. (This was the
extra credit problem in Session 4.)

Given three int variables, nValue1, nValue2, and nValue3, an equation for
calculating the average is the following:

(nValue1 + nValue2 + nValue3) / 3

This equation is correct and reasonable. However, let’s consider the equally cor-
rect and reasonable solution:

nValue1/3 + nValue2/3 + nValue3/3

Note

Saturday Morning52

4689-9 ch05.f.qc 3/7/00 9:23 PM Page 52

To see what affect this might have, consider the following simple averaging
program which utilizes both algorithms:

// IntAverage - average three numbers using integer
// data type
#include <stdio.h>
#include <iostream.h>

int main(int nArg, char* pszArgs[])
{

int nValue1;
int nValue2;
int nValue3;

cout << “Integer version\n”;
cout << “Input three numbers (follow each with newline)\n”;
cout << “#1:”;
cin > nValue1;

cout << “#2:”;
cin > nValue2;

cout << “#3:”;
cin > nValue3;

// the following solution does not suffer from round off as much
cout << “The add before divide average is:”;
cout << (nValue1 + nValue2 + nValue3)/3;
cout << “\n”;

// this version suffers from serious round off
cout << “The divide before add average is:”;
cout << nValue1/3 + nValue2/3 + nValue3/3;
cout << “\n”;

cout << “\n\n”;
return 0;

}

Session 5 — Variable Types 53

Part II–Saturday M
orning

Session 5

4689-9 ch05.f.qc 3/7/00 9:23 PM Page 53

This program retrieves the three values nValue1, nValue2, and nValue3 from
cin, the keyboard. It then outputs the average of the three numbers, using the
add-before-divide algorithm followed by the divide-before-add algorithm.

After building and executing the program, I entered the values 1, 2, and 3
expecting to get an answer of 2 in both cases. Instead, I got the results shown
in Figure 5-1.

Figure 5-1
The divide-before-add algorithm displays significant rounding-off error.

To understand the reason for this strange behavior let’s enter the values of 1, 2,
and 3 directly in equation 2.

1/3 + 2/3 + 3/3

Because integers cannot express fractions, the result of an integer operation is
always the fraction rounded toward zero.

This rounding down of integer calculations is called truncation.
With integer truncation in mind, the above equation becomes

0 + 0 + 1

or 1.
The add-before-divide algorithm fairs considerably better:

(1 + 2 + 3)/3

equals 6/3 or 2.

Saturday Morning54

4689-9 ch05.f.qc 3/7/00 9:23 PM Page 54

Even the add-before-divide algorithm is not always correct. Enter the values 1,
1, and 3. The answer returned by both algorithms is 1 instead of the correct 12⁄3.

You must be very careful when performing division involving
integers because truncation is likely to occur.

Limited range

A second problem with the int variable type is its limited range. A normal int
variable can store a maximum value of 2,147,483,647 and a minimum value of
–2,147,483,648 — more or less, plus 2 billion to minus 2 billion.

Some older (actually, “very older”) compilers limit the range of
an int variable to the range -32,768 to 32,767.

Solving the truncation problem

Fortunately, C++ understands decimal numbers.
C++ refers to decimal numbers as floating-point numbers, or simply as floats. The

term floating point stems from the decimal point being allowed to float back and
forth as necessary to express the value.

Floating point variables are declared in the same way as int variables:

float fValue1;

To see how floating point numbers fix the rounding-off problem inherent with
integers, I converted all of the int variables to float in the earlier IntAverage
program. (The resulting program is contained on the enclosed CD-ROM under the
name FloatAverage.)

FAverage converted the numbers 1, 2, and 3 to the proper average of 2 using
both algorithms as shown in Figure 5-2.

If you intend to perform calculations, stick with floating-point
numbers.

Tip

Note

Note

Session 5 — Variable Types 55

Part II–Saturday M
orning

Session 5

4689-9 ch05.f.qc 3/7/00 9:23 PM Page 55

Figure 5-2
Floating-point variables calculate the proper average for the values 1, 2,
and 3.

Limitations of floating point

While floating-point variables can solve many calculation problems, such as trunca-
tion, they have a number of limitations.

Counting

For one thing, floating-point variables cannot be used in applications where count-
ing is important. This includes C++ constructs that require counting capability.
This is because C++ can’t be sure exactly which whole number value is meant by a
given floating-point number. For example, it’s clear that 1.0 is 1, but what about
0.9 or 1.1? Should these also be considered as 1?

C++ simply avoids the problem by insisting on using int values when counting
is involved.

Calculation speed

Historically, a computer processor can process integer arithmetic quicker than it
can process floating-point arithmetic. Thus, while a processor might be capable of
adding 1000 integer numbers in a given amount of time, the same processor might
be capable of performing only 200 floating-point calculations.

Saturday Morning56

4689-9 ch05.f.qc 3/7/00 9:23 PM Page 56

Calculation speed has become less and less of a problem as microprocessors
increase in capability. Most modern processors contain special calculation circuitry
enabling them to perform floating-point calculations almost as fast as integer cal-
culations.

Loss of accuracy

Further, even floating-point variables don’t solve all computational problems.
Floating-point variables have a limited precision: about six digits.

To see why this is a problem, consider that 1⁄3 is expressed as 0.333. . . in a con-
tinuing sequence. The concept of an infinite series makes sense in math, but not
to a computer. The computer has finite accuracy. Thus, a floating-point version of
1⁄3 is roughly 0.333333. When these 6 digits are multiplied by 3 again, the proces-
sor computes a value of 0.999999 rather than the mathematically expected 1. The
loss of accuracy in computations due to the limitations of the floating-point data
type is called round-off error.

C++ can correct for many forms of round-off error. For example, in output, C++
can determine that instead of 0.999999, that the user really meant 1. In other
cases, however, even C++ cannot correct for round-off error.

“Not so limited” range

The float data type also has a limited range, although the range of a float is
much larger than that of an integer. The maximum value of a floating-point vari-
able is roughly 10 to the 38th power. That’s 1 followed by 38 zeroes.

Only the first 6 digits have any meaning because the remaining
32 digits suffer from floating point round off error. Thus, a float-
ing-point variable can hold the value 123,000,000 without
round-off error but not the value 123,456,789.

Other Variable Types

C++ provides other variable types in addition to int and float. These are shown
in Table 5-1. Each type has its advantages as well as its limitations.

Note

Session 5 — Variable Types 57

Part II–Saturday M
orning

Session 5

4689-9 ch05.f.qc 3/7/00 9:23 PM Page 57

Table 5-1
Other C++ Variable Types

Name Example Purpose

char ‘c’ A single char variable can store a single
alphabetic or digital character. Not suitable
for arithmetic. (The single quotes indicate
the single character c.)

string “this is a string” A string of characters; a sentence. This is
used to contain phrases. (The double quotes
indicate the string of characters this is a
string.)

double 1.0 A larger, economy-size floating-point type
with 15 significant digits and a maximum
value of 10 to the 308th power.

long 10L A larger integer type with a range of
2 billion to –-2 billion.

Thus, the statement

// declare a variable and set it to 1
long lVariable;
lVariable = 1;

// declare a variable of type double and set it to 1.0
double dVariable;
dVariable = 1.0;

declares a variable lVariable to be of type long and sets it equal to the
value 1, while dVariable is a double type variable set to the value 1.0.

It is possible to declare a variable and initialize it in the same
statement:
int nVariable = 1; // declare a variable and

// initialize it to 1Tip

Saturday Morning58

4689-9 ch05.f.qc 3/7/00 9:23 PM Page 58

There is no particular significance of the name of the variable to
the C++ compiler.

A char variable can hold a single character, whereas a string holds a string of
characters. Thus, ‘a’ is the character a whereas “a” is a string containing just the
letter a. (String is not actually a variable type, but for most purposes you can treat
it as such. You will learn more details about string in Chapter14.)

The character ‘a’ and the string “a” are not the same thing. If an
application requires a string, you cannot provide it a character,
even if the string contains only the single character.

Both long and double are extended forms of int and float respectively — long
stands for long integer, and double stands for double-precision floating point.

Types of constants

Notice how each data type is expressed.
In an expression such as n = 1;, the constant 1 is an int. If you really meant

for 1 to be a long integer then you need to write the statement as n = 1L;. The
analogy is as follows, 1 represents a single ball in the bed of a pickup truck, while
1L is a single ball in a dump truck. The ball is the same, but the capacity of its
container is much larger.

Similarly 1.0 represents the value 1 but in a floating-point container. Notice,
however, that the default for floating-point constants is double. Thus, 1.0 is a
double number and not a float.

Special characters

In general, you can store any printable character you want in a char or string vari-
able. There is also a set of nonprintable characters that are so important that they
are allowed as well. Table 5-2 lists these characters.

You have already seen the newline character. This character breaks a string into
separate lines.

Never

Note

Session 5 — Variable Types 59

Part II–Saturday M
orning

Session 5

4689-9 ch05.f.qc 3/7/00 9:23 PM Page 59

Table 5-2
Nonprintable but Often Used Character Constants

Character Constant Meaning

‘\n’ new line

‘\t’ tab

‘\0’ null

‘\\’ backslash

So far, I have only placed newlines at the end of strings. However, a newline can
be placed anywhere within a string. Consider, for example, the following string:

cout << “This is line 1\nThis is line 2”

appears on the output as

This is line 1
This is line 2

Similarly, the ‘\t’ tab character moves output to the next tab position. Exactly
what that means is dependent on the type of computer you are using to run the
program.

Because the backslash character is used to signify special characters, there
needs to be a character pair for the backslash itself. The character ‘\\’ represents
the backslash.

Saturday Morning60

C++ Collision with MS-DOS Filenames

MS-DOS uses the backslash character to separate folder names in the path
to a file. Thus, Root\FolderA\File represents File in FolderA, which is a
subdirectory of Root.

Unfortunately, MS-DOS’s use of backslash conflicts with that of C++. The
MS-DOS path Root\FolderA\File is represented by the C++ string
“Root\\FolderA\\File”. The double backslashes are necessary because of
the special use of the backslash character in C++.

4689-9 ch05.f.qc 3/7/00 9:23 PM Page 60

Mixed Mode Expressions

I almost hate to bring this up, but C++ enables you to mix variable types in a
single expression. That is, you can add an integer with a double. The following
expression in which nValue1 is an int is allowed:

// in the following expression the value of nValue1
// is converted to a double before performing the
// assignment
int nValue1 = 1;
nValue1 = nValue1 + 1.0;

An expression in which the two operands are not of the same type is called a
mixed mode expression. Mixed mode expressions generate a value whose type is
equal to the more capable of the two operands. In this case, nValue1 is converted
to a double before the calculation proceeds.

Similarly, an expression of one type may be assigned to a variable of a different
type as in the following statement

// in the following assignment, the whole
// number part of fVariable is stored into nVariable
fVariable = 1.0;
int nVariable;
nVariable = fVariable;

Precision or range may be lost if the variable on the left side of
the assignment is “smaller.” In the previous example, the value
of fVariable must be truncated before being stored in nVariable.

Converting a “larger” size value to a “smaller” size variable is called promotion
while converting values in the opposite direction is known as demotion. We say
that the value of int variable nVariable1 is promoted to a double:

int nVariable1 = 1;
double dVariable = nVariable1;

Mixed mode expressions are not a good idea. You should make
your own decisions instead of leaving it up to C++ — C++ may
not understand what you really want.

Tip

Note

Session 5 — Variable Types 61

Part II–Saturday M
orning

Session 5

4689-9 ch05.f.qc 3/7/00 9:23 PM Page 61

REVIEW

As you have seen, integer variables are both efficient in terms of machine time and
easy to program. Integer variables have definite limitations when used in calcula-
tions, however. Floating-point variables are ideal for use in mathematical equations
because they do not suffer from significant round off nor significant range limita-
tion. On the downside, floating-point variables are more difficult to use and not as
universally applicable as integers.

Saturday Morning62

Naming Conventions

You may have noticed that I begin the name of each variable with a special
character that seems to have nothing to do with the name. These special
characters are shown below. Using this convention, you can immediately
recognize dVariable as being a variable of type double.

Character Type

n int

l long

f float

d double

c character

sz String

These leading characters help the programmer keep track of the variable
type. Thus, you can immediately identify the following as a mixed mode
assignment of a long variable to an int variable.

nVariable = lVariable;

Remember, however, that although I might use some special characters in
variable names, these characters have no significance to C++. I could just
as soon have used q to signify int had I wanted to. Many programmers
don’t use any naming convention at all.

4689-9 ch05.f.qc 3/7/00 9:23 PM Page 62

� Integer variables represent counting numbers, such as 1, 2, and so on.
� Integer variables have a range of –2 billion to +2 billion.
� Floating-point variables represent decimal fractional values.
� Floating point variables have a practically unlimited range.
� The char variable type is used to represent ANSI characters.

QUIZ YOURSELF

1. What is the range of an int variable? (See “Limited Range.”)

2. Why don’t float variables suffer from significant rounding off error? (See
“Solving the Truncation Problem.”)

3. What is the type of the constant 1? What is the type of 1.0? (See “Types
of Constants.”)

Session 5 — Variable Types 63

Part II–Saturday M
orning

Session 5

4689-9 ch05.f.qc 3/7/00 9:23 PM Page 63

4689-9 ch05.f.qc 3/7/00 9:23 PM Page 64

