
Session Checklist

✔ Using simple logical operators and variables
✔ Working with binary numbers
✔ Performing bitwise operations
✔ Creating logical assignment statements

O ther than a few oddballs such as increment and decrement, the C++ mathe-
matical operators are common operations that you encounter in everyday
life. By comparison, the C++ logical operators are unknown.

It isn’t that people don’t deal with logical operations. If you think back to our
mechanical tire changer in Session 1, the capability to express logical computa-
tions such as “if the tire is flat AND I have a lug wrench. . .” is a must. People
compute AND and OR constantly; it’s just that they aren’t accustomed to writing
them down.

Logical operators fall into two types. One type, which I call simple logical opera-
tors, are operators that are common in everyday life. The second type, the bitwise
logical operators, is unique to the computer world. I consider the simple operators
before jumping off into the more complex bitwise versions.

S E S S I O N

Logical Operations

7

4689-9 ch07.f.qc 3/7/00 9:24 PM Page 73

Simple Logical Operators

The simple logical operators represent the same kind of logical decisions you’d make
in daily life: such as considering whether something is true or false, or comparing
two things to determine whether they’re the same. The simple logical operators are
shown in Table 7-1.

Table 7-1
Simple Logical Operators

Operator Meaning

== equality; true if the left hand argument has the same value as
the right

!= inequality; opposite of equality

>, < greater than, less than; true if the left hand argument is greater
than/less than the right hand argument

>=, <= greater than or equal to, less than or equal to; true if either > or
== is true, /< or == is true

&& AND; true if both the left and right hand arguments are true

|| OR; true if either the left or the right hand arguments are true

! NOT; true if it’s argument is false

The first six entries in Table 7-1 are the comparison operators. The equality opera-
tor is used to compare two numbers. For example, the following is true if the value
of nVariable is 0.

nVariable == 0;

Don’t confuse the equality operator == with the assignment oper-
ator =. Not only is this is a common mistake, but it’s a mistake
that the C++ compiler cannot catch.
nVariable = 0; // programmer meant to say nVariable == 0

Never

Saturday Morning74

4689-9 ch07.f.qc 3/7/00 9:24 PM Page 74

The greater than (>) and less than (<) operators are similarly common in every-
day life. The following logical comparison expression is true:

int nVariable1 = 1;
int nVariable2 = 2;
nVariable1 < nVariable2;

The greater than or equal to (>=) and less than or equal to (<=) are similar except
that they include equality, whereas the other operators do not.

The && (AND) and || (OR) are equally common. These operators are typically
combined with the other logic operators:

// true if nV2 is greater than nV1 but smaller than nV3
(nV1 < nV2) && (nV2 < nV3);

Be careful when using the comparison operators on floating-
point numbers. Consider the following example:
float fVariable1 = 10.0;
float fVariable2 = (10 / 3) * 3;
fVariable1 == fVariable2; // are these two equal?

The comparison in the above example is not necessarily true.
10 / 3 is equal to 0.333.... C++ cannot represent an infinite
number of digits. Stored as a float, 10/3 becomes something
like 0.333333. Multiplying this number by 3 gives a result of
0.999999 which is not exactly equal to 10.

Just as (10.0 / 3) * 3 is not exactly identical to 10.0, the
results of a floating-point calculation may be off by some nor-
mally tiny amount. Such small differences may be unnoticeable
to you and me, but not to the computer. Equality means exactly
that, exact equality.

The safer comparison is as follows:
float fDelta = fVariable1 - fVariable2;
fDelta < 0.01 && fDelta > -0.01;

This comparison is true if fVariable1 and fVariable2 are within
some delta of each other. (The term “some delta” is intention-
ally vague — it should represent acceptable error.)

Never

Session 7—Logical Operations 75

Part II–Saturday M
orning

Session 7

4689-9 ch07.f.qc 3/7/00 9:24 PM Page 75

The numerical processor in your PC goes to great pains to avoid
floating round off errors such as the one above — depending on
the situation, the numeric processor might provide a tiny delta for
you automatically; however, you should never count on such aids.

Short circuits and C++

The && and || operators perform what is called short circuit evaluation. Consider
the following:

condition1 && condition2;

If condition1 is not true, then the result is not true no matter what the value of
condition2 (that is, condition2 could be true or false without changing the
result). Similarly, in the following

condition1 || condition2;

if condition1 is true then the result is true no matter what the value of
condition2.

To save time, C++ evaluates condition1 first. C++ does not evaluate condition2
if condition1 is false in the case of && or condition1 is true in the case of ||.

Logical variable types

If > and && are operators, then a comparison such as a > 10 must be an expres-
sion. Clearly, the result of such an expression must be either TRUE or FALSE.

You may have noticed already that no Boolean variable type was mentioned in
Session 5. That is, there is no variable type that can have the value TRUE or FALSE
and nothing else. Then what is the type of an expression such as a > 10?

C++ uses the type int to store Boolean values. The value 0 is taken to be FALSE.
Any value other than 0 is TRUE. An expression such as a > 10 evaluates to either
0 (FALSE) or 1 (TRUE).

Microsoft Visual Basic also uses an integer to hold TRUE and
FALSE values; however, in Visual Basic a comparison operation
returns either a 0 (FALSE) or a –1 (TRUE).

Tip

Note

Saturday Morning76

4689-9 ch07.f.qc 3/7/00 9:24 PM Page 76

Binary Numbers

The so-called bitwise logical operators operate on their arguments at the bit level.
To understand how they work, let’s first examine binary numbers, which are how
computers store values.

The numbers that we are familiar with are known as decimal numbers because
they are based on the number 10. A number such as 123 refers to 1 × 100 plus
2 × 10 plus 3 × 1. Each of these base numbers, 100, 10, and 1 are powers of 10.

12310 = 1 * 100 + 2 * 10 + 3 * 1

The use of a base number of 10 for our counting system most likely stems from the
fact that humans have 10 fingers, the original counting tools. If our numbering
scheme had been invented by dogs, it might well have been based on the number
8 (1 “finger” of each paw is out of sight on the back part of the leg). Such an octal
system would have worked just as well:

12310 = 1738 = 1 * 6410 + 7 * 810 + 3

The small 10 and 8 here refer to the numbering system, 10 for decimal (base 10)
and 8 for octal (base 8). A counting system may use any base other than 1.

Computers have essentially two fingers. Because of the way they are built,
they prefer counting using base 2. The number 12310 is expressed as

0*128 + 1*64 + 1*32 + 1*16 + 1*8 + 0*4 +1*2 + 1*1

or 011110112.
It is convention to always express binary numbers using either 4, 8, 32, or 64

binary digits even if the leading digits are zero. This is also because of the way
computers are built internally.

Because the term “digit” refers to a multiple of 10, a binary
digit is called a bit. Bit stems from binary digit. Eight bits make
up a byte.

With such a small base, it is necessary to use a large number of digits to express
numbers. It is inconvenient to use an expression such as 011110112 to express such
a mundane value as 12310. Programmers prefer to express numbers by units of 4 bits.

A single 4-bit digit is essentially base 16, because 4 bits can express any value
from 0 to 15. Base 16 is known as the hexadecimal number system. Hexadecimal is
often contracted to hex.

Note

Session 7—Logical Operations 77

Part II–Saturday M
orning

Session 7

4689-9 ch07.f.qc 3/7/00 9:24 PM Page 77

Hexadecimal uses the same digits as decimal for the numbers 0 through 9. For
the digits between 9 and 16, hexadecimal uses the first 6 letters of the alphabet:
A for 10, B for 11, and so on. Thus, 12310 becomes 7B16.

7 * 16 + B (i.e. 11) * 1 = 123

Because programmers prefer to express numbers in 4, 8, 32, or 64 bits, they simi-
larly prefer to express hexadecimal numbers in 1, 2, 4, or 8 hexadecimal digits,
even when the leading digits are 0.

Finally, it is inconvenient to express a hexadecimal number such as 7B16 using
a subscript because terminals don’t support subscripts. Even on a word processor
such as the one I am using now, it is inconvenient to change fonts to and from
subscript mode just to type two digits. Therefore, programmers use the convention
of beginning a hexadecimal number with a “0x” (the reason for such a strange
convention goes back to the early days of C). Thus, 7B becomes 0x7B. Using this
convention, 0x123 is most definitely not the same number as 123. (In fact, 0x123
equals 291 in decimal.)

Bitwise Logical Operations

All of the operators defined so far can be performed on hexadecimal numbers in
the same way that they are applied to decimal numbers. The reason that we can-
not perform a multiplication such as 0xC × 0xE in our head has to do with the
multiplication tables we learned in school and not any limitations of the operators
themselves.

In addition to the mathematical operators, there is a set of operations based on
single-bit operators. These base operators are only defined for 1-bit numbers.

The single-bit operators

The bitwise operators perform logic operations on single bits. If you consider 0 to
be false and 1 to be true (it doesn’t have to be his way, but that is the common
convention), then you can say things such as the following for the bitwise AND
operator:

1 (true) AND 1 (true) is 1 (true)
1 (true) AND 0 (false) is 0 (false)

Saturday Morning78

4689-9 ch07.f.qc 3/7/00 9:24 PM Page 78

And similarly for the OR operator:

1 (true) OR 0 (false) is 1 (true)
0 (false) OR 0 (false) is 0 (false)

Written in tabular form it looks like Tables 7-2 and 7-3.

Table 7-2
Truth Table for the AND Operator

AND 1 0

1 1 0

0 0 0

Table 7-3
Truth Table for the OR Operator

OR 1 0

1 1 1

0 1 0

In Table 7-2, the result of 1 AND 0 is shown in row 1 (corresponding to the 1 row
head) and column 2 (corresponding to the 0 column head).

One other logical operation, which is not so commonly used in day-to-day liv-
ing, is the “or else” operator, which is commonly contracted to XOR. XOR is true if
either argument is true, but not true if both are true. The truth table for XOR is
shown in Table 7-4.

Table 7-4
Truth Table for the XOR Operator

XOR 1 0

1 0 1

0 1 0

Armed with these single bit operators, we can take on the C++ bitwise logical
operations.

Session 7—Logical Operations 79

Part II–Saturday M
orning

Session 7

4689-9 ch07.f.qc 3/7/00 9:24 PM Page 79

The bitwise operators

The C++ bitwise operators perform bit operations on every bit of their arguments.
The individual operators are shown in Table 7-5.

Table 7-5
C++ Bitwise Operators

Operator Function

~ NOT: toggle each bit from 1 to 0 and from 0 to 1

& AND each bit of the left hand argument with that on the right

| OR

^ XOR

The NOT operator is the easiest to understand: NOT converts a 1 into 0 and a 0
into 1. (That is, 0 is NOT 1 and 1 is NOT 0.)

~01102 (0x6)
10012 (0x9)

The NOT operator is the only unary bitwise logical operator. The following calcula-
tion demonstrates the & operator:

01102
&
00112
00102

Proceeding from left to right, 0 AND 0 is 0. In the next bit, 1 AND 0 is 0. In bit 3,
1 AND 1 is 1. In the least significant bit, 0 AND 1 is 0.

The same calculation can be performed on numbers displayed in hexadecimal by
first converting the number in binary, performing the operation, and then recon-
verting the result to hexadecimal.

0x6 01102
& → &
0x3 00112

00102 → 0x2

Saturday Morning80

4689-9 ch07.f.qc 3/7/00 9:24 PM Page 80

Such conversions back and forth are much easier to perform
using hexadecimal instead of decimal numbers. Believe it or not,
with practice you can perform bitwise operations in your head.

A simple test

We need an example program to test your ability to perform bitwise operations first
on paper and, later, in your head. Listing 7-1 is a program that inputs two hex val-
ues from the keyboard and outputs the results of ANDing, ORing, and XORing.

Listing 7-1
Bitwise operator testing

// BitTest - input two hexadecimal values from the
// keyboard and then output the results
// of applying the &, | and ^ operations
#include <stdio.h>
#include <iostream.h>

int main(int nArg, char* nArgs[])
{

// set output format to hexadecimal
cout.setf(ios::hex);

// input the first argument
int nArg1;
cout << “Enter arg1 as a four-digit hexadecimal: “;
cin > nArg1;

int nArg2;
cout << “Enter arg2: “;
cin > nArg2;

cout << “nArg1 & nArg2 = 0x”
<< (nArg1 & nArg2) << “\n”;

Continued

Tip

Session 7—Logical Operations 81

Part II–Saturday M
orning

Session 7

4689-9 ch07.f.qc 3/7/00 9:24 PM Page 81

Listing 7-1 Continued

cout << “nArg1 | nArg2 = 0x”
<< (nArg1 | nArg2) << “\n”;

cout << “nArg1 ^ nArg2 = 0x”
<< (nArg1 ^ nArg2) << “\n”;

return 0;
}

Output:

Enter arg1 as a four-digit hexadecimal: 0x1234
Enter arg2: 0x00ff
nArg1 & nArg2 = 0x34
nArg1 | nArg2 = 0x12ff
nArg1 ^ nArg2 = 0x12cb

The first statement, which appears as cout.setf(ios::hex);, sets the output
format from the default decimal to hexadecimal (you’ll have to trust me that it
works for now).

The remainder of the program is straightforward. The program reads nArg1 and
nArg2 from the keyboard and then outputs all combinations of bitwise calculations.

Executing the program on the values 0x1234 and x00ff results in the output
shown at the end of the listing.

Hexadecimal numbers appear with a preceding 0x.

Why?

The purpose for most operators is clear. No one would quarrel with the need for the
plus or minus operators. The use for the < or > operators is clear. It may not be so
clear to the beginner when and why one would use the bitwise operators.

Note

Saturday Morning82

4689-9 ch07.f.qc 3/7/00 9:24 PM Page 82

The AND operator is often used to mask out information. For example, suppose
that we wanted to extract the least significant hex digit from a four-digit number:

0x1234 0001 0010 0011 0100
& → &

0x000F 0000 0000 0000 1111
0000 0000 0000 0100 → 0x0004

Another use is that of setting and extracting individual bits.
Suppose that we were using a single byte to store information about a person in

a database that we were building. The most significant bit might be set to 1 if the
person is male, the next set to 1 if a programmer, the next set to 1 if the person is
attractive, and the least significant bit set to 1 if the person has a dog.

Bit Meaning

0 1→male

1 1→programmer

2 1→attractive

3 1→owns a dog

This byte would be encoded for each database and stored along with name, social
security number, and any number of other illegal information.

An ugly male programmer who owns a dog would be coded as 11012. To test all
records in the database by searching for unattractive programmers who don’t own
dogs irrespective of gender we would use the following comparison.

(databaseValue & 0x0110) == 0x0100
^^ ^ -> 0 = not attractive

^ 1 = is a programmer
* -> no interest
^ -> interested

In this case, the 0110 value is known as a mask because it masks
away bit properties of no interest.

Note

Session 7—Logical Operations 83

Part II–Saturday M
orning

Session 7

4689-9 ch07.f.qc 3/7/00 9:24 PM Page 83

REVIEW

You learned the mathematical operators presented in Chapter 6 in grade school.
You probably did not learn the simple logical operators then, but they are certainly
common to everyday use. Operators such as AND and OR are understandable practi-
cally without explanation. Since C++ has no logical variable type — it uses 0 to
mean FALSE and everything else to be TRUE.

By comparison, the binary operators are something new. These operators perform
the same logical AND and OR type operators but on each bit separately.

QUIZ YOURSELF

1. What is the difference between the && and & operators? (See “Simple
Logical Operators and Bitwise Logical Operations.”)

2. What is the value of (1 && 5)? (See “Simple Logical Operators.”)

3. What is the value of 1 & 5? (See “Bitwise Logical Operations.”)

4. Express 215 as the sum of powers of ten. (See “Binary Numbers.”)

5. Express 215 as the sum of powers of two. (See “Binary Numbers.”)

6. What is 215 in hexadecimal? (See “Binary Numbers.”)

Saturday Morning84

4689-9 ch07.f.qc 3/7/00 9:24 PM Page 84

