30 Min.
To Go

SESSION

Flow Control Commands

Session Checklist

0 Controlling the flow through the program
0 Executing a group of statements repetitively
0 Avoiding “infinite loops”

Each took a single set of values as input, output the result, and terminated.
This is similar to instructing our computerized mechanic in how to take off a
single lug nut with no option to loop around to the other lug nuts on the wheel or
other wheels on the car.
What is missing in our programs is any form of flow control. We have no ability
to make tests of any sort, much less make decisions based on those tests.
This chapter examines the different C++ flow control commands.

T he programs that have appeared so far in this book have been very simple.

a Saturday Morning

The Branch Command

The simplest form of flow control is the branch statement. This instruction enables
the computer to decide which path to take through C++ instructions based on some
logic condition. In C++, the branch statement is implemented using the if statement:

if (m>n)
{
// instructions to be executed if
// m is greater than n
}
else
{
// ...instructions to be executed if not
}

First, the condition m > n is evaluated. If the result is true, then control passes
to the instructions following the {. If m is not greater than n, then control passes
to the brace immediately following the else clause.

The else clause is optional. If it is not present, C++ acts as if it is present, but
empty.

Actually the braces are optional if there is only one statement
to be executed as part of the while loop; however, it is too easy

to make a mistake that the C++ compiler can’t catch without the
Note braces as a guide marker. It is much safer to always include the

braces. If your friends try to entice you into not using braces,
just say “NO.”

The following program demonstrates the if statement.

// BranchDemo - input two numbers. Go down one path of the

// program if the first argument is greater than
/1 the second or the other path if not

f#include <stdio.h>

#include <iostream.h>

int main(int nArg, char* pszArgs[])
{

// input the first argument...

Session 8—Flow Control Commands

int nArgl;
cout << “Enter argl: ©
cin > nArgl;

// ...and the second

int nArg?;
cout << “Enter arg2: “
cin > nArg?;

// now decide what to do:
if (nArgl > nArg2)
{

cout << “argument 1 is greater than argument 2\n”;

}

else

{
cout << “argument 1 is not greater than argument 2\n”;

return 0;

}

Here the program reads to integers from the keyboard and branches accordingly.
This program generates the following typical results:

Enter argl: 10
Enter arg2: 8
argument 1 is greater than argument 2

Looping Commands

Branch statements enable you to control flow of a program’s execution down one
path of a program or another. This is the C++ equivalent of allowing the computer-
ized mechanic to decide whether to use a wrench or a screwdriver depending on
the problem. This still doesn't get us to the point where the mechanic can turn the
wrench more than once, remove more than one lug nut, or handle more than one
wheel on the car. For that, we need looping statements.

8 U0ISSaS
Burulop Aepimyes—|| 1ied

Saturday Morning

The while loop

The simplest form of looping statement is the while loop. The form of a while
loop is as follows:

while(condition)
{

// ...repeatedly executed as long as condition is true
}

The condition is tested. If it is true, then the statements within the braces are
executed. Upon encountering the closed brace, control returns to the beginning
and the process starts over. The net effect is that the C++ code between the braces
is executed repeatedly as long as the condition is true.

The condition is only checked at the beginning of the loop. Even

if the condition ceases to be true, control does not exit the loop
until the beginning of the loop.

Note

If the condition is true the first time, then what will make it false in the future?
Consider the following example program:

// WhileDemo - input a Toop count. Loop while

// outputting astring nArg number of times.
#include <stdio.h>

#include <iostream.h>

int main(int nArg, char* pszArgs[])
{

// input the Toop count

int nLoopCount;

cout << “Enter nloopCount: *
cin > nLoopCount;

// now loop that many times
while (nLoopCount > 0)
{
nLoopCount = nLoopCount - 1;
cout << “Only “ << nlLoopCount << “ Toops to go\n”;

20 Min.
To Go

Session 8—Flow Control Commands E

}
return 0;

}

WhileDemo begins by retrieving a loop count from the user that it stores in the
variable nLoopCount. That done, the program continues by testing nLoopCount. If
nLoopCount is greater than 0, the program decrements nLoopCount by 1 and out-
puts the result to the display. The program then returns to the top of the loop to
test whether nLoopCount is still positive.

When executed, the program WhileDemo outputs the following results :

Enter nlLoopCount: 5
Only 4 Toops to go
Only 3 Toops to go
Only 2 Toops to go
Only 1 Toops to go
Only 0 Toops to go

When | enter a loop count of 5, the program loops five times, each time out-
putting the count down value.

If the user enters a negative loop count, the program skips the loop entirely.
Because the condition is never true, control never enters the loop. In addition, if
the user enters a very large number, the program loops for a long time before
completing.

A separate, seldom used version of the while loop, known as the

do while, is identical to the while loop except that the condition
isn’t tested until the bottom of the loop:

do
{

Note

// ...the inside of the loop
} while (condition);

Using the autodecrement feature

The program decrements the loop count by using the assignment and subtraction
statements. A more compact statement would use the autodecrement feature.
The following loop is slightly simpler than the one above.

while (nLoopCount > 0)

{
nLoopCount--;

8 U0ISSaS
Burulop Aepimyes—|| 1ied

m Saturday Morning

cout << “Only “ << nLoopCount << *“ loops to go\n”;
}

The logic in this version is the same as the original —the only difference is the
way that nLoopCount is decremented.

Because autodecrement both decrements its argument and returns its value, the
decrement operation can actually be combined with either of the other statements.
For example, the following version is the smallest loop yet.

while (nLoopCount-- > 0)
{

cout << “Only “ << nlLoopCount << “ Toops to go\n”;

This is the version that most C++ programmers would use.

This is where the difference between the predecrement and postdecrement oper-
ations arises.

Both nLoopCount-- and --nLoopCount decrement nLoopCount;
however, the former returns the value of nLoopCount before
being decremented and the latter after.

Note

Do you want the loop to be executed when the user enters a loop count of 1?
If you use the predecrement version, the value of --nLoopCount is 0 and the
body of the loop is never entered. With the postdecrement version, the value of
nLoopCount-- is 1 and control enters the loop.

The dreaded infinite loop

Suppose that because of a coding error, the programmer forgot to decrement the
variable nLoopCount, as in the loop example below. The result would be a loop
counter that never changed. The test condition would either be always false or
always true.

while (nLoopCount > 0)
{
cout << “Only “ << nLoopCount << *“ Tloops to go\n”;

Session 8—Flow Control Commands

Because the value of nLoopCount never changes, the program executes in a
never-ending or infinite loop. An execution path that continues forever is known
as an infinite loop. An infinite loop occurs when the condition that would other-
wise terminate the loop cannot occur — usually due to some coding error.

There are many ways of creating an infinite loop, most of which are much more
difficult to spot than this one.

The for loop —
—_— Q
=

A second form of loop is the for loop. The for loop has this format: I=
w

for (initialization; conditional; increment) g g-

| S5
// ...body of the Toop o=

=

} o

=)

Execution of the for loop begins with the initialization clause. The initializa- o

tion clause got this name because this is normally where counting variables are
initialized. The initialization clause is only executed once, when the for loop is
first encountered.
Execution continues to the conditional clause. In similar fashion to the while
loop, the for loop continues to execute as long as the conditional clause is true.
After completing execution of the code in the body of the loop, control passes
to the increment clause before returning to check the conditional clause, thereby
repeating the process. The increment clause normally houses the autoincrement or
autodecrement statements used to update the counting variables.
All three clauses are optional. If the initialization or increment clauses are
missing, C++ ignores them. If the conditional clause is missing, C++ performs
the for loop forever (or until something else breaks control outside of the loop).
The for loop is better understood by example. The following ForDemo program is
nothing more than the WhileDemo program converted to use the for loop construct.

// ForDemo - input a loop count. Loop while

// outputting a string nArg number of times.
#include <stdio.h>

#include <iostream.h>

int main(int nArg, char* pszArgsl[])
{

Saturday Morning

// input the Toop count

int nLoopCount;

cout << “Enter nlLoopCount: “;
cin > nlLoopCount;

// count up to the Toop count Timit
for (int i =1; i <= nLoopCount; i++)
{
cout << “We’ve finished “ << i << “ Toops\n”;
}

This version loops the same as before; however, instead of modifying the value
of nLoopCount, this version uses a counter variable.

Control begins by declaring a variable i and initializing it to t1. The for loop
then checks the variable i to make sure that it is less than or equal to the value
of nLoopCount. If this is true, the program executes the output statement, incre-
ments i, and starts over.

The for loop is also convenient when you need to count from O up to the loop
count value rather than from the loop count down to 0. This is implemented by a
simple change to the for loop:

// ForDemo - input a Toop count. Loop while

// outputting a string nArg number of times.
#include <stdio.h>

#include <iostream.h>

int main(int nArg, char* pszArgs[])
{

// input the Toop count

int nLoopCount;

cout << “Enter nlLoopCount: “;
cin > nLoopCount;

// count up to the Toop count limit
for (int i = 1; i <= nlLoopCount; i++)
{
cout << “We’ve finished “ << i << “ Toops\n”;
}
return 0;

Session 8—Flow Control Commands

Rather than begin with the loop count, this version starts with 1 and “loops

up” to the value entered by the user.
(stemming from the early days of the Fortran programming lan-
guage). It is for this reason that such loop variables don’t follow

Note the standard naming convention.

The use of the variable i for for loop increments is historical

When declared within the initialization portion of the for loop,
the index variable is only known within the for loop itself. Nerdy
C++ programmers say that the scope of the variable is the for
loop. In the example above, the variable i is not accessible from
the return statement because that statement is not in the loop.

Special loop controls

It can happen that the condition for terminating the loop occurs neither at the
beginning nor at the end of the loop. Consider the following program, which accu-
mulates a number of values entered by the user. The loop terminates when the
user enters a negative number.

The challenge with this problem is that the program can't exit the loop until
after the user has entered a value, yet it has to exit the loop before the value is
added to the sum.

For these cases, C++ defines the break command. When encountered, the break
causes control to exit the current loop immediately; that is, control passes from
the break statement to the statement immediately following the closed brace.

The format of the break commands is as follows:

while(condition) // break works equally well in for Toop
{
if (some other condition)
{
break; // exit the loop

} // control passes here when the
// program encounters the break

Armed with this new break command, my solution to the accumulator problem
appears as the program BreakDemo.

11 1ed |’
[

8 U0ISS3as

Burulopy Aepinyes—

Saturday Morning

// BreakDemo - input a series of numbers.

// Continue to accumulate the sum
// of these numbers until the user
// enters a 0.

f#include <stdio.h>
#include <iostream.h>

int main(int nArg, char* pszArgs[])
{

// input the loop count

int nAccumulator = 0;

cout << “This program sums values entered *
<< “by the user\n”;

cout << “Terminate the loop by entering “
<< *a negative number\n”;

// loop “forever”
for(;;)
{
// fetch another number
int nValue = 0;
cout << “Enter next number: *;
cin > nValue;

// if it’s negative...
if (nValue < 0)
{
// ...then exit
break;

// ...otherwise add the number to the accumulator
nAccumulator = nAccumulator + nValue;

// now that we’ve exited the Toop
// output the accumulated result
cout << “\nThe total is *

<< nAccumulator

Session 8—Flow Control Commands

<<\

return 0;

}

After explaining the rules to the user (entering negative number to terminate,
and so forth), the program enters an infinite for loop.

A for loop with no condition loops forever.

The loop is not truly infinite because it contains a break inter-
nally; however, the loop command is still referred to as infinite
because the break condition doesn’t exist in the command itself.

Note

Once in the loop, BreakDemo retrieves a number from the keyboard. Only after
the program has read a number can it test to determine whether the number read
matches the exit criteria. If the input number is negative, control passes to the
break, causing the program to exit the loop. If the input number is not negative,
control skips over the break command to the expression that sums the new value
to the accumulator.

Once the program exits the loop, it outputs the accumulated value and exits.
Here’s the output of a sample session:

This program sums values entered by the user
Terminate the Toop by entering a negative number
Enter next number: 1

Enter next number: 2

Enter next number: 3

Enter next number: 4

Enter next number: -1

The total is 10

When performing an operation on a variable repeatedly in a loop,
make sure that the variable was initialized properly before enter-
ing the loop. In this case, the program zeros nAccumulator
before entering the loop where nValue is added to it.

8 U0ISSaS
Burulop Aepimyes—|| 1ied

10 Min.
To Go

m Saturday Morning

Nested Control Commands

The three loop programs in this chapter are the moral equivalent of instructing the
mechanic in how to remove a lug nut: continue to turn the wrench until the nut
falls off. What about instructing the mechanic to continue removing lug nuts until
the wheel falls off? For this we need to implement nested loops.

A loop command within another loop command is known as a nested loop.

As an example, let's modify the BreakDemo program into a program that accu-
mulates any number of sequences. In this NestedDemo program, the inner loop
sums numbers entered from the keyboard until the user enters a negative number.
The outer loop continues accumulating sequences until the sum is 0.

// NestedDemo - input a series of numbers.

!/ Continue to accumulate the sum

// of these numbers until the user
!/ enters a 0. Repeat the process

// until the sum is 0.

#include <stdio.h>
#include <iostream.h>

int main(int nArg, char* pszArgs[])
{
// the outer Toop
cout << “This program sums multiple series\n”
<< “of numbers. Terminate each sequence\n”
<< “by entering a negative number.\n”
< “Terminate the series by entering two\n”
<< “negative numbers in a row\n”;

// continue to accumulate sequences
int nAccumulator;
do
{
// start entering the next sequence
// of numbers
nAccumulator = 0;
cout << “\nEnter next sequence\n”;

// Toop forever
for(;;)

Session 8—Flow Control Commands

// fetch another number

int nValue = 0;

cout << “Enter next number: *
cin > nValue;

// if it’s negative...
if (nValue < 0)
{
// ...then exit
break;

// ...otherwise add the number to the accumulator
nAccumulator = nAccumulator + nValue;

// output the accumulated result...
cout << “A\nThe total is “
<< nAccumulator

<L *An7y
// ...and start over with a new sequence
// if the accumulated sequence was not zero
} while (nAccumulator != 0);
cout << “Program terminating\n”;
return 0;

Can We switch to a Different Subject?

One last control statement is useful in a limited number of cases. The switch
statement is like a compound if statement in that it includes a number of differ-
ent possibilities rather than a single test:

switch(expression)

{
case cl:

8 U0ISSaS
Burulop Aepimyes—|| 1ied

Done!

a Saturday Morning

// go here if the expression == cl
break;

case c2:
// go here if expression == c2
break;

else
// go here if there is no match

}

The value of expression must be an integer (int, Tong, or char). The case val-
ues cl, c2, and c3 must be constants. When the switch statement is encountered,
the expression is evaluated and compared to the various case constants. Control
branches to the case that matches. If none of the cases match, control passes to
the else clause.

The break statements are necessary to exit the switch command.

Without the break statements, control “falls through” from one
case to the next.

Note

REVIEW

The simple if statement enables the programmer to send the flow of control down
one path or another based on the value of an expression. The looping commands
add the capability to execute a block of code repeatedly until an expression is
false. Finally, the break commands provide an extra level of control by allowing
program control to exit a loop at any point.

e The if statement evaluates an expression. If the expression is not 0 (that
is, it is true), control passes to the block immediately following the if
clause. If not, control passes to the block of code following the else
clause. If there is no else clause, control passes directly to the statement
following the if.

e The looping commands, while, do while, and for execute a block of code
repetitively until a condition is no longer true.

e The break statement allows control to pass out of a loop prematurely.

In Session 9, we look at ways to simplify C++ programs by using functions.

Session 8—Flow Control Commands E

QuIZ YOURSELF

1. lIsitan error to leave the else off of an if command? What happens?
(See “The Branch Command.”)

2. What are the three types of loop commands? (See “Looping Commands.”)
What is an infinite loop? (See “The Dreaded Infinite Loop.”)

4. What are the three “clauses” that make up a for loop?
(See “The for Loop.”)

8 U0ISSaS
Burulop Aepimyes—|| 1ied

