
Session Checklist

✔ Writing void functions
✔ Writing functions with multiple arguments
✔ Overloading functions
✔ Creating function templates
✔ Determining variable storage class

S ome of the example programs in Session 8 are already becoming a bit
involved and we have a lot more C++ to learn. Programs with multiple levels
of nesting of flow control can be difficult to follow. Add the numerous and

complicated branching that a “real-world” application requires and programs would
become virtually impossible to follow.

Fortunately, C++ provides a means for separating a stand-alone block of code
into a stand-alone entity known as a function. In this Session, I delve into how
to declare, create, and use C++ functions.

S E S S I O N

Functions

9

4689-9 ch09.f.qc 3/7/00 9:24 PM Page 101

Sample Function Code

Like so many things, functions are best understood by example. This section starts
with an example program, FunctionDemo, which simplifies the NestedDemo program
in Session 8 by defining a function to contain part of the logic. This section then
explains how the function is defined and how it is invoked using the example code
as a pattern.

Sample code

The NestedDemo in Session 8 involves an inner loop that accumulates a sequence
of numbers and an outer loop that repeats the process until the user decides to
quit. Logically we could separate the inner loop, the part that adds a sequence
of numbers, from the outer loop that repeats the process.

The following code example shows the NestedDemo is simplified by creating the
function sumSequence().

The names of functions are normally written with a set of paren-
theses immediately following.

// FunctionDemo - demonstrate the use of functions
// by breaking the inner loop of the
// NestedDemo program off into its own
// function

#include <stdio.h>
#include <iostream.h>

// sumSequence - add a sequence of numbers entered from
// the keyboard until the user enters a
// negative number.
// return - the summation of numbers entered
int sumSequence(void)
{

// loop forever
int nAccumulator = 0;
for(;;)
{

Tip

Saturday Morning102

4689-9 ch09.f.qc 3/7/00 9:24 PM Page 102

// fetch another number
int nValue = 0;
cout << “Enter next number: “;
cin > nValue;

// if it’s negative...
if (nValue < 0)
{

// ...then exit from the loop
break;

}

// ...otherwise add the number to the
// accumulator
nAccumulator = nAccumulator + nValue;

}

// return the accumulated value
return nAccumulator;

}

int main(int nArg, char* pszArgs[])
{ // Begin Main

cout << “This program sums multiple series\n”
<< “of numbers. Terminate each sequence\n”
<< “by entering a negative number.\n”
<< “Terminate the series by entering two\n”
<< “negative numbers in a row\n”;

// accumulate sequences of numbers...
int nAccumulatedValue;
do
{

// sum a sequence of numbers entered from
// the keyboard
cout << “\nEnter next sequence\n”;
nAccumulatedValue = sumSequence();

// now output the accumulated result
cout << “\nThe total is “

Session 9—Functions 103

Part II–Saturday M
orning

Session 9

4689-9 ch09.f.qc 3/7/00 9:24 PM Page 103

<< nAccumulatedValue
<< “\n”;

// ...until the sum returned is 0
} while (nAccumulatedValue != 0);
cout << “Program terminating\n”;
return 0;

} // End Main

Calling the function sumSequence()

Let’s first concentrate on the main program contained within the open and closed
braces marked with the comments Begin Main and End Main. This section of code
looks identical to programs that we wrote previously.

The line

nAccumulatedValue = sumSequence();

calls the function sumSequence() and stores the value returned in the variable
nAccumulatedValue. This value is subsequently output to the standard output on
the following three lines. The main program continues to loop until the sum returned
by the inner function is 0, indicating that the user has finished calculating sums.

Defining the sumSequence() function

The block of code that begins on line 13 and continues through line 38 makes up
the function sumSequence().

When the main program invokes the function sumSequence() on line 55,
control passes from the call to the beginning of the function on line 14.
Program execution continues from that point.

Lines 16 through 34 are identical to that found in the inner loop of NestedDemo.
After the program exits that loop, control passes to the return statement on line
37. At this point, control passes back to the call statement on line 55 along with
the value contained in nAccumulator. On line 55, the main program stores the
int returned in the local variable nAccumulatedValue and continues execution.

In this case, the call to sumSequence() is an expression, because
it has a value. Such a call can be used anywhere an expression is
allowed.

Note

Saturday Morning104

4689-9 ch09.f.qc 3/7/00 9:24 PM Page 104

Function

The FunctionDemo program demonstrates the definition and use of a
simple function.

A function is a logically separate block of C++ code. The function construct
has the form:

<return type> name(<arguments to the function>)
{

// ...
return <expression>;

}

The arguments to a function are values that can be passed for the function to
use as input. The return value is a value that the function returns. For example, in
the call to the function square(10), the value 10 is an argument to the function
square(). The returned value is 100.

Both the arguments and the return value are optional. If either is absent,
the keyword void is used instead. That is, if a function has a void argument
list, the function does not take any arguments when called. If the return type
is void, then the function does not return a value to the caller.

In the example FunctionDemo program, the name of the function is
sumSequence(), the return type is int, and there are no arguments.

The default argument type to a function is void. Thus, a function
int fn(void) may be declared as int fn().

Why use functions?

The advantage of a function over other C++ control commands is that it cordons off
a set of code with a particular purpose from other code in the program. By being
separate, the programmer can concentrate on the one function when writing it.

A good function can be described using a single sentence that
contains a minimum number of ors and ands. For example, “the
function sumSequence accumulates a sequence of integer values
entered by the user.” This definition is concise and clear.Tip

Tip

Session 9—Functions 105

Part II–Saturday M
orning

Session 9

SYNTAX �

4689-9 ch09.f.qc 3/7/00 9:24 PM Page 105

The function construct made it possible for me to write essentially two
distinct parts of the FunctionDemo program. I concentrated on creating the
sum of a sequence of numbers when writing the sumSequence() function.
I didn’t think at all about other code that might call the function.

Likewise, when writing main(), I could concentrate on handling the summation
returned by sumSequence(), while thinking only of what the function did, and
not about how it worked.

Simple functions

The simple function sumSequence() returns an integer value which it calculates.
Functions may return any of the regular types of variables. For example, a function
might return a double or a char.

If a function returns no value, then the return type of the function is
labeled void.

A function may be labeled by its return type. Thus, a function
that returns an int is often known as an integer function. A
function that returns no value is known as a void function.

For example, the following void function performs an operation but returns
no value:

void echoSquare()
{

int nValue;
cout << “Enter a value:”;

cin > nValue;
cout << “\n The square is:” << nValue * nValue << “\n”;

return;
}

Control begins at the open brace and continues through to the return statement.
The return statement in a void function is not followed by a value.

The return statement in a void function is optional. If it is not
present, then execution returns to the calling function when con-
trol encounters the close brace.

Note

Note

Saturday Morning106

4689-9 ch09.f.qc 3/7/00 9:24 PM Page 106

Functions with arguments

Simple functions are of limited use because the communication from such functions
is one-way, through the return value. Two-way communication is preferred. Such
communication is through function arguments. A function argument is a variable
whose value is passed to the calling function during the call operation.

Example function with arguments

The following example defines and uses a square() function which returns the
square of a double-precision float passed to it:

// SquareDemo - demonstrate the use of a function
// which processes arguments

#include <stdio.h>
#include <iostream.h>

// square - returns the square of its argument
// dVar - the value to be squared
// returns - sqare of dVar
double square(double dVar)
{

return dVar * dVar;
}

int sumSequence(void)
{

// loop forever
int nAccumulator = 0;
for(;;)
{

// fetch another number
double dValue = 0;
cout << “Enter next number: “;
cin > dValue;

// if it’s negative...

if (dValue < 0)
{

Session 9—Functions 107

Part II–Saturday M
orning

Session 9

4689-9 ch09.f.qc 3/7/00 9:24 PM Page 107

// ...then exit from the loop
break;

}

// ...otherwise calculate the square
int nValue = (int)square(dValue);

// now add the square to the
// accumulator
nAccumulator = nAccumulator + nValue;

}

// return the accumulated value
return nAccumulator;

}

int main(int nArg, char* pszArgs[])
{

cout << “This program sums multiple series\n”
<< “of numbers. Terminate each sequence\n”
<< “by entering a negative number.\n”
<< “Terminate the series by entering two\n”
<< “negative numbers in a row\n”;

// Continue to accumulate numbers...
int nAccumulatedValue;
do
{

// sum a sequence of numbers entered from
// the keyboard
cout << “\nEnter next sequence\n”;
nAccumulatedValue = sumSequence();

// now output the accumulated result
cout << “\nThe total is “

<< nAccumulatedValue
<< “\n”;

// ...until the sum returned is 0
} while (nAccumulatedValue != 0);

Saturday Morning108

4689-9 ch09.f.qc 3/7/00 9:24 PM Page 108

cout << “Program terminating\n”;
return 0;

}

This is the same FunctionDemo program except that SquareDemo adds the
square of the values entered.

The value of dValue is passed to the function square() on the line

int nValue = (int)square(dValue);

contained within the function sumSequence(). The function square() multiplies
the value passed to it on line 12 and returns the result. The returned value is stored
in the variable dSquare, which is added to the accumulator value on line 38.

Functions with multiple arguments

Functions may have multiple arguments separated by commas. The following function
returns the product of its two arguments:

int product(int nArg1, int nArg2)
{

return nArg1 * nArg2;
}

Session 9—Functions 109

Part II–Saturday M
orning

Session 9

Casting Values

Line 38 of the SquareDemo program contains an operator that we have not
seen before:

nAccumulator = nAccumulator + (int)dValue;

The (int) in front of the dValue indicates that the programmer wants to
convert the dValue variable from its current type, in this case double,
into an int.

A cast is an explicit conversion from one type to another. Any numeric type
may be cast into any other numeric type. Without such a cast, C++ would
have converted the types anyway, but would have generated a warning.

4689-9 ch09.f.qc 3/7/00 9:24 PM Page 109

main() exposed

It should be clear that main() is nothing more than a function, albeit, a function
with strange arguments.

When a program is built, C++ adds some boilerplate code that executes
before your program ever starts. This code sets up the environment in which
your program operates. For example, this boilerplate code opens the cin and
cout input and output objects.

Once the environment has been established, the C++ boilerplate code calls the
function main() thereby beginning execution of your code. When your program is
complete, it exits from main(). This enables the C++ boilerplate to clean up a few
things before turning over control to the operating system which kills the program.

Multiple functions with the same nickname

Two functions in a single program cannot share the same name. If they did,
C++ would have no way to distinguish them when they are called. However,
in C++ the name of the function includes the number and type of its arguments.
Thus, the following are not the same functions:

void someFunction(void)
{

//perform some function
}
void someFunction(int n)
{

// ...perform some different function
}
void someFunction(double d)
{

// ...perform some very different function
}
void someFunction(int n1, int n2)
{

//do something different yet
}

someFunction() is a shorthand name, or nickname, for both functions, in
the same way that Stephen is shorthand for my name. Whether I use the short-
hand name when describing the function or not, C++ still knows the functions

Saturday Morning110

4689-9 ch09.f.qc 3/7/00 9:24 PM Page 110

as someFunction(void), someFunction(int), someFunction(double), and
someFunction(int, int).

void as an argument type is optional; sumFunction(void) and
sumFunction() are the same function.

A typical application might appear as follows:

int nVariable1, nVariable2; // equivalent to
// int Variable1;
// int Variable2;

double dVariable;

// functions are distinguished by the type of
// the argument passed
someFunction(); // calls someFunction(void)
someFunction(nVariable1); // calls someFunction(int)
someFunction(dVariable); // calls someFunction(double)
someFunction(nVariable1, nVariable2); // calls

// someFunction(int, int)

// this works for constants as well
someFunction(1); // calls someFunction(int)
someFunction(1.0); // calls someFunction(double)
someFunction(1, 2); // calls someFunction(int, int)

In each case, the type of the arguments matches the full name of the
three functions.

The return type is not part of the name of the function. Thus, the
following two functions have the same name and cannot be part
of the same program:
int someFunction(int n); // full name of the function

// is someFunction(int)
double someFunction(int n); // same name

Note

Note

Session 9—Functions 111

Part II–Saturday M
orning

Session 9

4689-9 ch09.f.qc 3/7/00 9:24 PM Page 111

Function Prototypes

In the example programs so far, the target functions sumSequence() and square()
were both defined in code that appeared before the actual call. This doesn’t have to
be the case: a function may be defined anywhere in the module. A module is another
name for a C++ source file.

However, something has to tell main() the full name of the function before it
can be called. Consider the following code snippet:

int main(int argc, char* pArgs[])
{

someFunc(1, 2);
}
int someFunc(double dArg1, int nArg2)
{

// ...do something
}

The call to someFunc() from within main() doesn’t know the full name of the
function. It might surmise from the arguments that the name is someFunc(int,
int) and that its return type is void; however, as you can see, this is wrong.

What is needed is some way to inform main() of the full name of someFunc()
before it is used. What is needed is a function declaration. A function declaration
or prototype appears the same as a function with no body. In use, a prototype
appears as follows:

int someFunc(double, int);
int main(int argc, char* pArgs[])
{

someFunc(1, 2);
}
int someFunc(double dArg1, int nArg2)
{

// ...do something
}

Saturday Morning112

4689-9 ch09.f.qc 3/7/00 9:24 PM Page 112

The call in main() now knows to cast the 1 to a double before making the call.
In addition, main() knows that the function someFunc() returns an int; however,
main() doesn’t do anything with the result.

C++ allows the programmer to throw away the value returned by
a function.

Variable Storage Types

There are three different places that function variables can be stored. Variables
declared within a function are said to be local. In the following example, the
variable nLocal is local to the function fn():

int nGlobal;
void fn()
{

int nLocal;
static int nStatic;

}

The variable nLocal doesn’t “exist” until the function fn() is called. In addition,
only fn() has access to nLocal— other functions cannot “reach into” the function
to access it.

By comparison, the variable nGlobal exists as long as the program is running.
All variables have access to nGlobal all of the time.

The static variable nStatic is something of a mix between a local and a global
variable. The variable nStatic is created when execution first reaches the declaration
(roughly, when the function fn() is called). In addition, nStatic is only accessible
within fn(). Unlike nLocal, however, nStatic continues to exist even after the pro-
gram exits fn(). If fn() assigns a value to nStatic once, it will still be there the
next time that fn() is called.

There is a fourth variable type, auto, but today it has the same
meaning as local.

Note

Tip

Session 9—Functions 113

Part II–Saturday M
orning

Session 9

4689-9 ch09.f.qc 3/7/00 9:24 PM Page 113

REVIEW

By this time, you should have some idea of how complex a program can become and
how creating small functions can simplify program logic. Well-conceived functions
are small, ideally less than 50 lines and with fewer than 7 if or looping commands.
Such functions are easier to grasp and, therefore, easier to write and debug. After
all, isn’t that the idea?

� C++ functions are a means for dividing code into bite-sized chunks.
� Functions may have any number of arguments, which are values passed

to the function.
� Functions may return a single value to the caller.
� Function names may be overloaded as long as they can be distinguished

by the number and types of their arguments.

It’s all very nice to outfit your programs with numerous expressions in multiple vari-
ables that are divided into functions, but it isn’t of much use if you can’t get your
programs to work. In Session 10, you will see some of the most basic techniques for
finding coding errors in your programs.

QUIZ YOURSELF

1. How do you call a function? (See “Calling the Function sumSequence().”)

2. What does a return type of void mean? (See “Function.”)

3. Why write functions? (See “Why Use Functions?”)

4. What is the difference between a local variable and a global variable?
(See “Variable Storage Types.”)

Saturday Morning114

4689-9 ch09.f.qc 3/7/00 9:24 PM Page 114

