30 Min.
To Go

SESSION

The Array

Session Checklist

0 Introducing the array data type

0 Using arrays

O Initializing an array

0 Using the most common type of array — the character string

grams input a value from the keyboard and then add it to some total contained
in a single variable before reading the next number. If we return to our first
analogy, the human program, these programs address one lug nut at a time. However,
there are times when we want to hold all of the lug nuts at one time before operating
on them.
This session examines how to store a set of values, much like the mechanic can
hold or store a number of lug nuts at one time.

T he programs written so far dealt with numbers one at a time. The summing pro-

Saturday Afternoon

What Is an Array?

Let’s begin by examining the whys and what fors of arrays. An array is a sequence
of objects, usually numbers, each of which is referenced by an offset.

Consider the following problem. I need a program that can read a sequence of
numbers from the keyboard. I'll use the now-standard rule that a negative number
terminates input. After the numbers are read in, and only then, should the program
display them on the standard output device.

I could attempt to store numbers in subsequent variables as in:

cin > nVl;
if (nV1 >= 0)
{
cin > nV2;
if (nV2 >=0)

{

You can see that this approach can't handle sequences involving more than just
a few numbers.

An array solves the problem nicely:

int nV;
int nValues[1281;
for (int 1 = 0; ; i++)
{

cin > nV;

if (nV < 0)

{

break;

}

nValues[i] = nV;
}

The second line of this snippet declares an array nValues. Array declarations
begin with the type of the array members, in this case int, followed by the name
of the array. The last element of an array declaration is an open and closed bracket
containing the maximum number of elements that the array can hold. In this code
snippet, nValues is declared as a sequence of 128 integers.

This snippet reads a number from the keyboard and stores it in a member of the
array nValues. An individual element of an array is accessed by providing the name

Session 11—The Array 133

of the array followed by brackets containing an index. The first integer in the array
is nValues[0], the second is nValues[1], and so on.

In use, nValues[i] represents the ith element in the array. The
index variable i must be a counting variable; that is, i must be
an int or a Tong. If nValues is an array of ints, then

nValues[i] is an int.

Accessing too far into an array

Mathematicians start counting their arrays with 1. The first member of a mathe-
matical array x is x(1). Most programming languages also start with an offset of
1. C++ arrays begin counting at 0. The first member of a C++ array is nValues[0].

There is a good reason why C++ begins counting from 0, but you
have to wait until Session 12 to learn what it is.

Note

Because indexing in a C++ array begins with 0, the last element of a 128-integer
array is nArray[1271].

Unfortunately for the programmer, C++ does not check whether the index you
are using is within the range of the array. C++ is perfectly happy to give you access
to nArray[200]. In fact, C++ will even let you access nArray[-15].

As an analogy, suppose that distances on a highway were measured by equally
spaced power line poles. (In western Texas this isn't too far from the truth.) Let's
call this unit of measure a pole-length. The road to my house begins at the turn
off from the main highway and continues to my house in a straight line. The
length of this road is exactly 9 pole-lengths.

If we begin numbering poles with the telephone pole at the highway, then the
telephone pole next to my house is pole number 10. This is shown in Figure 11-1.

I can access any position along the road by counting poles from the highway.

If we measure from the highway to the highway, we calculate a distance of 0 pole-
length. The next discrete point is 1 pole-length, and so on, until we get to my
house at 9 pole-lengths distance.

I can measure a distance 20 pole-lengths away from the highway. Of course, this
location is not on the road. (Remember that the road stops at my house.) In fact, |
have no idea what you might find there. You might be on the next highway, you
might be out in a field, you might even land in my neighbor’s living room. Examining
that location is bad enough, but storing something there could be a lot worse. Storing
something in a field is one thing, but crashing through my neighbor’s living room
could get you in trouble.

TT U0ISSas
uoouJayy Aepinies—||| 1ed

134 Saturday Afternoon

4 9 pole lengths
5
6

7

Figure 11-1
It takes 10 telephone poles to measure off a distance of 9 pole-lengths.

By analogy, reading array[20] of a 10-element array returns a more or less ran-
dom value. Writing to array[20] has unpredictable results. It may do nothing, it
may lead to erratic behavior, or it may crash the program.

The most common incorrect location to access in the 128-
element nArray, is nArray[128]. While only one element

beyond the end of the array, reading or writing this location
Note is just as dangerous as any other incorrect address.

An array in practice

The following program solves the initial problem posed. This program inputs a
sequence of integer values from the keyboard until the user enters a —1. The
20 Min. program then displays the numbers input and reports their sum.

To Go

// ArrayDemo - demonstrate the use of arrays
// by reading a sequence of integers

Session 11—The Array 135

// and then displaying them in order
#include <stdio.h>

#include <iostream.h>

// prototype declarations
int sumArray(int nArray[], int nSize);
void displayArray(int nArray[], int nSize);

int main(int nArg, char* pszArgs[])
{

// input the Toop count

int nAccumulator = 0;

cout << “This program sums values entered”
< “by the user\n”;

cout << “Terminate the loop by entering “
<< “a negative number\n”;

// store numbers into an array
int nInputValues[128]7;
int nNumValues = 0;
do
{
// fetch another number
int nValue;
cout << “Enter next number: “
cin > nValue;

// if it’s negative...
if (nValue < 0) // Comment A
{

// ...then exit

break;

// ...otherwise store the number

TT U0ISSas
uoouJayy Aepinies—||| 1ed

136 Saturday Afternoon

// into the storage array
nInputValues[nNumValues++] = nValue;
} while(nNumValues < 128); // Comment B

// now output the values and the sum of the values
displayArray(nInputValues, nNumValues);
cout << “The sum is

<< sumArray(nlnputValues, nNumValues)
< \n”
return 0;

// displayArray - display the members of an
// array of length nSize
void displayArray(int nArray[], int nSize)
{
cout << “The value of the array is:\n”;
for (int i = 0; 1 < nSize; i+t)
{
cout.width(3);
cout << i << K< nArrayl[i] << “\n”;
1
cout << “\n”;

// sumArray - return the sum of the members of an
// integer array
int sumArray(int nArray[], int nSize)
{

int nSum = 0;

for (int i = 0; i < nSize; i+t)

{

nSum += nArray[il;
t

return nSum;

Session 11—The Array 137

The program ArrayDemo begins with a prototype declaration of the functions
sumArray () and displayArray(). The main body of the program contains
the typical input loop. This time, however, the values are stored in the array
nInputValues, with the variable nNumValues storing a count of the number of
values stored in the array. The program stops reading values if the user inputs
a negative number (Comment A), or if the number of elements in the array is
exhausted (that’s the test near Comment B).

The array nInputValues is declared as 128 integers long. You
might think that this should be enough for anyone, but don’t
count on it. Writing more data than an array’s limit permits
causes your program to perform erratically, and often to crash.
No matter how large you make the array, always put a check to
make sure that you do not exceed the limits of the array.

The main function ends by displaying the contents of the array and the sum.

The displayArray() function contains the typical for loop used to traverse an
array. Notice again, that the index is initialized to 0 and not to 1. In addition,
notice how the for loop that terminates before i is equal to nSize.

In a similar fashion, the sumArray () function loops through the array, adding
each member to the total contained in nSum. Just to keep nonprogrammers guess-
ing, the term iterate is used to mean traverse through a set of objects, such as an
array. We say that “the sumArray() function iterates through the array.”

Initializing an array

An array may be initialized at the time it is declared.

An uninitialized variable initially contains random values.

Note
The following code snippet demonstrates how this is done:
float fArray[5] = {0.0, 1.0, 2.0, 3.0, 4.0};

This initializes fArray[0] to O, fArray[1] to 1, fArray[2] to 2, and so on.
The number of initialization constants can determine the size of the array.
For example, we could have determined that fArray has five elements just by

TT UOISSBS
uoouJayy Aepinies—||| 1ed

138 Saturday Afternoon

counting the values within the braces. C++ can count as well. The following decla-
ration is identical to the one above:

float fArrayl] = {0.0, 1.0, 2.0, 3.0, 4.0};

It is not necessary to repeat the same value over and over to initialize a large
a array. For example, the following initializes all 25 locations in fArray to 1.0:

float fArray[25] = {1.0};

Why use arrays?

On the surface, the ArrayDemo program doesn’t do anything more than our earlier,
nonarray-based programs did. True, this version can replay its input by displaying
the numbers input before calculating the sum, but this hardly seems earth
shattering.

Yet, the capability to redisplay the input values hints at a significant advantage to
using arrays. Arrays enable the program to process a series of numbers multiple times.
The main program was capable of passing the array of input values to displayArray()
for display and then repass the same numbers to sumArray () for addition.

Arrays of arrays

Arrays are adept at storing sequences of numbers. Some applications require
sequences of sequences. A classic example of this matrix configuration is the
spreadsheet. Laid out like a chessboard, each element in the spreadsheet has
both an x and a y offset.

C++ implements the matrix as follows:

int nMatrix[21037];

This matrix is 2 elements in one dimension and 3 elements in another dimen-
sion, equalling 6 elements. As you might expect, one corner of the matrix is
nMatrix[0][01], while the other corner is nMatrix[1][2].

Whether you consider nMatrix to be 10 elements long in the

x dimension or in the y dimension is a matter of taste.

Note

Session 11—The Array 139

A matrix may be initialized in the same way that an array is:

int nMatrix[2]03] = {{(1, 2, 3}, {4, 5, 6}};

This initializes the three-element array nMatrix[0] to 1, 2, and 3 and the
three-element array nMatrix[1] to 4, 5, and 6, respectively.

Arrays of Characters

The elements of an array can be of any C++ variable type. Arrays of floats,
doubles, and longs are all possible; however, arrays of characters have particular
significance.

An array of characters containing my first name would appear as:

char sMyName[] = {‘S’, ‘t’, ‘e’, ‘p’, ‘h’, ‘e’, ‘n’};
The following small program displays my name to the MS-DOS window, the stan-
dard output device.

// CharDisplay - output a character array to
// standard output, the MS-DOS window

#include <stdio.h>

f#include <iostream.h>

// prototype declarations
void displayCharArray(char sArray[], int nSize);

int main(int nArg, char* pszArgs[])
{
char cMyName[] = {‘S’, “t’, ‘e’, ‘p’, ‘h’, ‘e’, ‘n’};
displayCharArray(cMyName, 7);
cout << “\n”;
return 0;

// displayCharArray - display an array of characters
// by outputing one character at
// a time

void displayCharArray(char sArray[], int nSize)

TT U0ISSas
uoouJayy Aepinies—||| 1ed

140 Saturday Afternoon

for(int i = 0; i< nSize; i++)
{
cout << sArraylil;

J

This program works fine, but it is inconvenient to pass the length of the array
around with the array itself. We avoided this problem when inputting integers from
the keyboard by making up the rule that a negative number terminated input. If we
could make the same rule here, we wouldn’'t need to pass the size of the array —we
would know that the array was complete when we encountered the special code
character.

Let's use the code O to mark the end of a character array.

The character whose value is 0 is not the same thing as 0. The
value of 0 is 0x30. The character whose value is O is often writ-
ten as \0 just to make the distinction clear. Similarly, the charac-

Note ter \y'is the character whose numeric value is y. The character \0
is known as the null character.

Using that rule, the previous small program becomes:

// DisplayString - output a character array to
!/ standard output, the MS-DOS window
#include <stdio.h>

#include <iostream.h>

// prototype declarations
void displayString(char sArrayl[]);

int main(int nArg, char* pszArgs[])
{
char cMyName[] =
{*S’, “t’, ‘e’, ‘p’, ‘h’, ‘e, ‘n’, \0O'};
displayString(cMyName);
cout << “\n”;
return 0;

Session 11—The Array 141

// displayString - display a character string
// one character at a time
void displayString(char sArray[])
{
for(int i = 0; sArrayl[i] != 0; i++)
{
cout << sArrayl[il;

}

The bolded declaration of cMyName declares the character array with the extra
character \0’ on the end. The displayString program iterates through the character
array until a null character is encountered.

The function displayString() is simpler to use than its displayCharArray()
predecessor. It is no longer necessary to pass along the length of the character
array. Further, displayString() works when the size of the character string is
not known at compile time. For example, this would be the case if the user were
entering a string of characters from the keyboard.

I have been using the term string as if it were a fundamental type, such as int
or float. At the time of its introduction, | mentioned that string is actually a vari-
ation of an existing type. As you see here, a string is a null-terminated character
array.

C++ provides an optional, more convenient means of initializing a string by
using double quotes rather than the single quotes used for characters. The line

char szMyName[] = “Stephen”;

is exactly equivalent to the line

char cMyName[] = {*S’, ‘t’, ‘e’, ‘p’, ‘h’, ‘e’, ‘n’, ‘\0’'};
in the previous example.

The naming convention used here is exactly that: a convention.

C++ does not care; however, the prefix sz stands for zero-
terminated string.

Note

The string “Stephen” is eight characters long, not seven

—the null character after the n is assumed.

Note

TT U0ISSas
uoouJayy Aepinies—||| 1ed

10 Min.
To Go

Saturday Afternoon

Manipulating Strings

The C++ programmer is often required to manipulate strings.
Although C++ provides a number of string manipulation functions, let’s write
our own to get an idea of how these functions might work.

Our own concatenate function

Let's begin with a simple, if somewhat lengthy, C++ program to concatenate
two strings.

// Concatenate - concatenate two strings
// with a “ - “ in the middle
#include <stdio.h>

#include <iostream.h>

// the following include file is required for the
// str functions
#include <string.h>

// prototype declarations
void concatString(char szTarget[], char szSourcel]);

int main(int nArg, char* pszArgs[])
{
// read first string...
char szStringl[256];
cout << “Enter string #1:7;
cin.getline(szStringl, 128);

// ...now the second string...
char szString2[1287;

cout << “Enter string #2:7;
cin.getline(szString2, 128);

// ...concatenate a * - * onto the first...
concatString(szStringl, “ - “);

Session 11—The Array 143

// strcat(szStringl, “ - “);

// ...now add the second string...
concatString(szStringl, szString2);
// strcat(szStringl, szString2);

// ...and display the result
cout << “\n” << szStringl << “\n”;

return 0;

// concatString - concatenate the szSource string
// to the end of the szTarget string
void concatString(char szTarget[], char szSourcel])
{

// find the end of the first string

int nTargetindex = 0;

while(szTarget[nTargetIndex])

{

nTargetIndex++;

// tack the second to the end of the first
int nSourcelndex = 0;
while(szSource[nSourcelndex])
{

szTarget[nTargetIndex] =

szSource[nSourcelndex];
nTargetIndex++;
nSourcelndex++;

// tack on the terminating null
szTarget[nTargetIndex] = “\0’;

TT U0ISSas
uoouJayy Aepinies—||| 1ed

144 Saturday Afternoon

The function main() reads two strings using the getline() function.

The alternate cin > szString reads up to the first space.

Here we want to read until the end of the line.

Note

Function main() concatenates the two strings using the concatString() function
before outputting the result.

The concatString() concatenates the second argument, szSource, onto
the end of the first argument, szTarget.

The first loop within concatString() iterates through the string szTarget
until nTargetIndex references the null at the end of the string.

The loop while(value = 0) is the same as while(value)
because value is considered false if it's equal to O, and true
if equal to anything other than 0.

The second loop iterates through the szSource string, copying elements from
that string to szTarget starting with the first character in szSource and the null
character in szTarget. The loop stops when nSourceIndex references the null
character in szSource.

The concatString() function tacks a final null character to the resulting tar-
get string before returning.

Don't forget to terminate the strings that you construct program-
matically. You will generally know that you forgot to terminate
your string if the string appears to contain “garbage” at the end

Note when displayed or if the program crashes when you next try to
manipulate the string.

The result of executing the program is shown below.
Enter string #1:This is the first string
Enter string #2:THIS IS THE SECOND STRING

This is the first string - THIS IS THE SECOND STRING
Press any key to continue

Session 11—The Array

2,

following:

char dash[] = * - *;
concatString(dash, szMyName);

145

It is very tempting to write C++ statements such as the

This doesn’t work because dash is given just enough room to
store four characters. The function will undoubtedly overrun
the end of the dash array.

C++ string-handling functions

C++ provides significant string capability in the > and << stream functions. You
will see some of this capability in Session 28. At a more basic level, C++ provides
a set of simple functions shown in Table 11-1.

Table 11-1

C++ Library Functions for Manipulating Strings

Name

Operation

int strlen(string)

Returns the number of characters
in a string

void strcat(target, source)

Concatenates the source string
to the end of the target string

void strcpy(target, source)

Copies a string to a buffer

int strstr

Finds the first occurrence
of one string in another

int strcmp(sourcel, source?)

Compares two strings

int stricmp(sourcel, source?)

Compares two strings without
regard to case

In the Concatenate program, the call to concatString() could have been
replaced with a call to strcat(), which would have saved us the need to write our

own version:

strcat(szStringl, “ - “);

TT UOISSBS
uoouJayy Aepinies—||| 1ed

146 Saturday Afternoon

You need to add the statement #include <string.h> to the
beginning of any program that uses the str. . . functions.

Note

Wide characters

The standard C++ char type is an 8-bit field capable of representing the values
from 0 to 255. There are 10 digits, plus 26 lowercase letters, plus 26 uppercase
letters. Even if various umlauted and accented characters are added, there is still
more than enough range to represent the Roman alphabet set plus the Cyrillic
alphabet.

Problems with the char type don't arise until you begin to include the Asian
character sets, in particular the Chinese and Japanese kanjis. There are literally
thousands of these symbols— many more than the lowly 8-bit character set.

C++ includes support for a newer character type called wchar or wide characters.
While this is not an intrinsic type like char, numerous C++ functions treat it as if
it were. For example, wstrstr() compares two wide character sets. If you are writ-
ing international applications and need access to Asian languages, you will need
to use these wide character functions.

Obsolescent Output Functions

C++ also provides a set of lower-level input and output functions. The most useful
is the printf () output function.

These are the original C input and output functions. Stream input
and output didn’t come along until after the introduction of C++.

Note

In its most basic form, printf () outputs a string to cout.

printf(“This string is output to cout”);

The printf() function performs output using a set of embedded format control
commands, each of which begins with a % sign. For example, the following prints
out the value of an integer and a double variable.

Done!

Session 11—The Array 147

int nint = 1;

double dDouble = 3.5;

printf(“The int value is %i; the float value is %f”,
nint, dDouble);

The integer value is inserted at the point of the %1, whereas the double appears
at the location of the %f:

The int value is 1; the float value is 3.5

Although difficult to use, the printf() function provides a level of output control
that is difficult to achieve using stream functions.

REVIEW

The array is nothing more than a sequence of variables. Each identical-type variable is
accessed by an index to the array —much like the number portion of a house address
identifies the houses on a street. The combination of arrays and loop commands, such
as for and while loops, enable a program to easily process a number of elements. By
far the most common C++ array type is the zero-terminated character array, common-
ly known as the character string.

e Arrays enable the program to loop through a number of entries quickly and
efficiently using one of C++'s loop commands. For example, the increment
portion of the for loop is designed to increment an index, while the con-
dition portion is set up to detect the end of the array.

e Accessing elements outside the boundaries of an array is both common and
dangerous. It is tempting to access element 128 of an array declared as 128
bytes long; however, because array indices start at 0, the final element is
at offset 127, not 128.

e Terminating a character array with a special character enables a function
to know where the array ends without the need to carry a character-length
field. To facilitate this, C++ considers the character ‘\0’, the character
whose bit value is 0, an illegal, terminating, noncharacter. Programmers
use the term character string or ASCIIZ strings for a null-terminated charac-
ter array.

e Built in an Occidental world, the 8-bit C++ char types cannot handle the
thousands of special characters required in some Asian languages. To han-
dle these characters, C++ supports a special wide character, often referred
to as wchar. C++ includes special functions to handle wchar strings in the
standard C++ library of routines.

TT UOISSAS
uoousayy Aepinyes—i|1 1red

148 Saturday Afternoon

QuIZ YOURSELF

1. What is the definition of an array? (See “What Is an Array?”)

2. What is the offset of the first and last elements of an array declared
as myArray[1281? (See “Accessing Too Far into an Array.”)

3. What is a character string? What is the type of a character string?
What terminates a string? (See “Arrays of Characters.”)

