SESSION

Intro to Classes

Session Checklist

0 Using the class structure to group different types of variables
into one object

0 Writing programs using the class structure

ints or doubles. Arrays do not work well, however, when grouping differ-
ent types of data such as when we try to combine a social security number
with the name of a person into a single record. C++ provides a structure called a
30 Min. class to handle this problem.

To Go

Q rrays are great at handling sequences of objects of the same type such as

Grouping Data

Many of the programs in earlier sessions read a series of numbers, sometimes into
arrays, before processing. A simple array is great for stand-alone values. However,
many times (if not most of the time) data comes in groups of information. For
example, a program may ask the user for her first name, last name, and social secu-
rity number. Alone any one of these values is not sufficient—only in the aggregate

150 Saturday Afternoon

do the values make any sense. For reasons that become clear shortly, I call such a
grouping of data an object.

One way to describe an object is by what | call parallel arrays. In this approach,
the programmer defines one array of strings for the first names, another for the
second, and a third for the social security numbers. The three different values are
coordinated through the array index.

An example

The following program uses the parallel array approach to input and display a
series of names and social security numbers. szFirstName[i], szLastName[i],
and nSocialSecurity[i] to combine to form a single object.

// ParallelData - store associated data in
// parallel arrays

#include <stdio.h>

#include <iostream.h>

f#include <string.h>

// “parallel arrays” store associated data
// (make arrays global to give all functions
// access)

char szFirstName[25][1287;

char szLastName [25][1287;

int nSocialSecurity[25];

// getData - read a name and social security
!/ number; return 0 if no more to
/1 read
int getData(int index)
{

cout << “\nEnter first name:”;

cin > szFirstName[index];

// if the first name is ‘exit’ or ‘EXIT ...
if ((strcmp(szFirstName[index], “exit”) == 0)

(strcmp(szFirstName[index], “EXIT”) == 0))

// ...return with a “Tet’s quit” indicator

Session 12—Intro to Classes 151

return 0;

// Toad the remainder of the object
cout << “Enter last name:”;
cin > szLastNamel[index];

cout << “Enter social security number:”;
cin > nSocialSecuritylindex];

return 1;

// displayData - output the index’th data set
void displayData(int index)

{

cout << szFirstNamel[index]
SO
<< szLastName[index]
Ly
<< nSocialSecurity[index]
< *\n”s

int main(int nArg, char* pszArgs[])

{

// Toad first names, last names, and social

// security numbers

cout << “Read name/social security information\n”
< “Enter ‘exit’ for first name to exit\n\n”;

int index = 0;

while (getData(index))

{

indext++;

cout << “\nEntries:\n”;
for (int i = 0; 1 < index; i+t+)
{

displayData(i);

2T UoIssas
uoouJayy Aepinies—||| 1ed

152 Saturday Afternoon

}
return 0;

}

The three coordinated arrays are declared as follows:

char szFirstName[25][128];
char szLastName [25][128];
int nSocialSecurity[25];

The three have sufficient room to handle 25 entries. The first and last names
of each entry are limited to 128 characters.

exceeded. In a real-world application, failing to make the check

No checks are made to insure that the 128-character limits are
@ is unacceptable.

Never

The main() function first reads in the objects in the loop beginning with while
(getData(index)) in the function main(). The call to getData() reads the next
entry. The loop exits when getData() returns a zero indicating that entry is
complete.

The program then calls displayData() to display the objects entered.

The getData() function reads data from cin to the three arrays. The function
returns a O if the user enters a first name of exit or EXIT. If the first name is not
exit the function reads the remaining data and returns a 1 to indicate that there
are more data objects to read.

The following output is from a sample run of the ParallelData program.

Read name/social security information
Enter ‘exit’ for first name to exit

Enter first name:Stephen
Enter last name:Davis
Enter social security number:1234

Enter first name:Scooter
Enter Tast name:Dog
Enter social security number:3456

Enter first name:Valentine
Enter last name:Puppy

Session 12—Intro to Classes 153

Enter social security number:5678
Enter first name:exit

Entries:
Stephen Davis/1234
Scooter Dog/3456

The problem

The parallel-array approach is one solution to the data-grouping problem. In many
older programming languages, there were no other options. For large amounts of
data, keeping the potentially large number of arrays in synchronization becomes
quite a problem.

The simple ParallelData program has only three arrays to keep track of. Consider
the amount of data that a credit card might keep on each entry. Potentially dozens
of arrays would be needed.

A secondary problem is that it isn't obvious to the maintenance programmer
that the numerous arrays belong to each other. If the programmer updates any
combination of the arrays without updating them all, the data becomes corrupted.

The Class

What is needed is a structure that can hold all of the data needed to describe a
single object. A single object would hold both the first name and last name along
with the social security number. C++ uses a structure known as a class.

The format of a class

A class used to describe a name and social security number grouping might appear
as follows:

// the dataset class
class NameDataSet
{
public:
char szFirstName[128];
char szLastName [128];

2T UOISSaS
uoousay Aepinyes—i|1 1red

154 Saturday Afternoon

int nSocialSecurity;

by

// a single instance of a dataset
NameDataSet nds;

A class definition starts with the keyword class followed by the name of
the class and an open-closed brace pair.

The alternative keyword struct may be used. The keywords struct
and class are identical except that the pub1ic declaration is
assumed in the struct.

Note

The first line within the braces is the keyword public.

Note

Later sessions show what other keywords C++ allows
besides public.

Following the pub1ic keyword are the entries it takes to describe the object.
The NameDataSet class contains the first and last name entries along with the
social security number. Remember that a class declaration includes the data
necessary to describe one object.

The last line declares the variable nds as a single entry of class NameDataSet.
Programmers say that nds is an instance of the class NameDataSet. You instantiate
the class NameDataSet to create nds. Finally, programmers say that szFirstName
and the others are members or properties of the class.

The following syntax is used to access the property of a particular object:

NameDataSet nds;
nds.nSocialSecurity = 10;
cin > nds.szFirstName;

Here, nds is an instance of the class NameDataSet (that is, a particular
NameDataSet object). The integer nds.nSocialSecurity is a property of
the nds object. The type of nds.nSocialSecurity is int, while the type
of nds.szFirstName is char[].

A class object can be initialized when it is created as follows:

NameDataSet nds = {“FirstName”, “LastName”, 1234};

Session 12—Intro to Classes 155

In addition, the programmer may declare and initialize an array of objects
as follows:

NameDataSet ndsArrayl[2] = {{ “FirstFN”, “FirstLN”, 1234}
{“SecondFN”, “SecondLN”, 5678}};

Only the assignment operator is defined for class objects by default. The assign-
ment operator performs a binary copy of the source object to the target object. Both
source and target must be of exactly the same type.

Example program

The class-based version of the ParallelData program appears below:

// ClassData - store associated data in
// an array of objects
#include <stdio.h>

#include <iostream.h>

#include <string.h>

// NameDataSet - stores name and social security
// information
class NameDataSet
{
public:
char szFirstName[1287;
char szLastName [1287;
int nSocialSecurity;

// getData - read a name and social security
// number; return 0 if no more to
// read
int getData(NameDataSet& nds)
{

cout << “\nEnter first name:”;

cin > nds.szFirstName;

if ((strcmp(nds.szFirstName, “exit”) == 0)

(strcmp(nds.szFirstName, “EXIT”) == 0))

111 Med |’
[

2T UOISSaS

uoouJayy Aepinyes—

156 Saturday Afternoon

return 0;

cout << “Enter Tlast name:”;
cin > nds.szlLastName;

cout << “Enter social security number:”;
cin > nds.nSocialSecurity;

return 1;

// displayData - output the index’th data set
void displayData(NameDataSet& nds)
{
cout << nds.szFirstName
L
<< nds.szlLastName
Ly
<< nds.nSocialSecurity
< “\n”y

int main(int nArg, char* pszArgs[])
{
// allocate 25 name data sets
NameDataSet nds[257];

// Toad first names, last names, and social

// security numbers

cout << “Read name/social security information\n”
< “Enter ‘exit’ for first name to exit\n”;

int index = 0;

while (getData(nds[index]))

{

indext++;

Done!

Session 12—Intro to Classes 157

cout << “\nEntries:\n”;
for (int i = 0; i < index; i++)
{
displayData(nds[i]);
}
return 0;
}

In this case, the main() function allocates 25 objects of class NameDataSet.
As before, main() enters a loop in which entries are read from the keyboard using
the function getData(). Rather than passing a simple index (or an index plus three
arrays), main() passes the object that getData(NameDataSet) is to populate.
Similarly, main() uses the displayData(NameDataSet) function to display each
NameDataSet object.

The getData() function reads the object information into the NameDataSet
object passed, which it calls nds.

The meaning of the ampersand added to the argument type
getData() is fully explained in Session 13. Suffice it to say
for now that the ampersand insures that changes made in

Note getData() are retained in main().

Advantages

The basic structure of the ClassData program is the same as that of the ParallelData
program; however, the ClassData program does not track multiple arrays. In an object
as simple as NameDataSet, it isn't obvious that this is a significant advantage. Consi-
der what both programs would look like if NameDataSet included the number of
entries required by a credit card company, for example. The larger the object, the
greater the advantage.

As we continue developing the NameDataSet class in later
chapters, the advantage increases.

111 Med |’
[

2T UOISSaS

uoouJayy Aepinyes—

158 Saturday Afternoon

REVIEW

Arrays can only handle sequences of the same types of objects; for example, an array
of ints or doubles. The class enables the programmer to group varied variable types
in one object. For example, a Student class may contain a character string for the
student name, an integer variable for the student identification, and a floating-point
variable to hold the grade-point average. The combination into arrays of class objects
combines the advantages of each in a single data structure.

e The elements of a class object do not have to be of the same type; how-
ever, because they are of different types, these elements must be addressed
by name and not by index.

e The keyword struct can be used in place of the keyword class. struct
is a holdover from the days of C.

QuiZ YOURSELF

1. What is an object? (See “Grouping Data.”)

2. What is the older term for the C++ keyword class?
(See “The Format of a Class.”)

3. What do the following italicized words mean?
(See “The Format of a Class.™)

a. Instance of a class
b. Instantiate a class
c. Member of a class

