
Session Checklist

✔ Introducing mathematical operations on character pointers
✔ Examining the relationship between pointers and arrays
✔ Applying this relationship to increase program performance
✔ Extending pointer operations to different pointer types
✔ Explaining the arguments to main() in our C++ program template

The pointer types introduced in Session 13 allow for some interesting opera-
tions. Storing the address of a variable only to turn around and use that
address more or less like the variable itself, is an interesting party trick, but

it has limited use except for the capability to permanently modify variables passed
to a function.

What makes pointers more interesting is the capability to perform mathematical
operations. Of course, because multiplying two addresses is illogical, it is not
allowed. However, the capability to compare two addresses or to add an integer
offset opens interesting possibilities that are examined here.

S E S S I O N

A Few More Pointers

14

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 175

Pointers and Arrays

Some of the same operators applicable to integers are applicable to pointer types.
This section examines the implications of this both to pointers and to the array
types studied so far.

Operations on pointers

Table 14-1 lists the three fundamental operations that are defined on pointers.

Table 14-1
Three Operations Defined on Pointer Types

Operation Result Meaning

pointer + offset pointer calculate the address of the object integer
entries from pointer

pointer - offset pointer the opposite of addition

pointer2 - pointer1 offset calculate the number of entries between
pointer2 and pointer1

(Although not listed in Table 14-1, derivative operators, such as pointer +=
offset and pointer++, are also defined as variations of addition.)

The simplistic memory model used in Session 13 to explain the concept of
pointers is useful here to explain how these operations work. Consider an array
of 32 1-byte characters called cArray. If the first byte of this array is stored at
address 0x110, then the array would extend over the range 0x110 through 0x12f.
While cArray[0] is located at address 0x110, cArray[1] is at 0x111, cArray[2]
at 0x112, and so forth.

Now assume a pointer ptr located at address 0x102. After executing the
expression:

ptr = &cArray[0];

the pointer ptr contains the address 0x110. This is demonstrated in Figure 14-1.
Addition of an integer offset to a pointer is defined so that the relationships

shown in Table 14-2 are true. Figure 14-2 also demonstrates why adding an offset n
to ptr calculates the address of the nth element in cArray.

Saturday Afternoon176

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 176

Figure 14-1
After the assignment ptr = &cArray[0] the pointer ptr points to the
beginning of the array cArray.

Table 14-2
Pointer Offsets and Arrays

Offset Result Corresponds to . . .

+ 0 0x110 cArray[0]

+ 1 0x111 cArray[1]

+ 2 0x112 cArray[2]

.

+ n 0x110+ n cArray[n]

100

102

104

110 ptr = &cArray[ø]

cArray[ø]

cArray[1]

cArray[2]

110

111

112

Session 14—A Few More Pointers 177

Part III–Saturday Afternoon
Session 14

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 177

Figure 14-2
The expression ptr + i results in the address of cArray[i].

Thus, given that

char* ptr = &cArray[0];

then

*(ptr + n) ← corresponds with → cArray[n]

100

102

104

106

110

'a'

*(ptr + 2) = 'a'

+2110

111

112

113

114

Saturday Afternoon178

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 178

Because * has higher precedence than addition, *ptr + n adds n
to the character which ptr points to. The parentheses are needed
to force the addition to occur before the indirection. The expres-
sion *(ptr + n) retrieves the character pointed at by the
pointer ptr plus the offset n.

In fact, the correspondence between the two forms of expression is so strong
that C++ considers array[n] nothing more than a simplified version of *(ptr +
n) where ptr points to the first element in array.

array[n] -- C++ interprets as → *(&array[0] + n)

To complete the association, C++ takes a second short cut. Given

char cArray[20];

then

cArray == &cArray[0]

That is, the name of an array without any subscript present is the address of
the array itself. Thus, we can further simplify the association to

array[n] → C++ interprets as → *(array + n)

This is a powerful statement. For example, the displayArray() function from
Session 11, which is used to display the contents of an array of integers, could be
written:

// displayArray - display the members of an
// array of length nSize
void displayArray(int nArray[], int nSize)
{

cout << “The value of the array is:\n”;

// point at the first element of nArray
int* pArray = nArray;
while(nSize--)
{

cout.width(3);

// output the integer pointed at by pArray...
cout << i << “: “ << *pArray << “\n”;

Note

Session 14—A Few More Pointers 179

Part III–Saturday Afternoon
Session 14

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 179

// ...and move the pointer over to the next
// member of nArray
pArray++;

}
cout << “\n”;

}

The new displayArray() begins by creating a pointer to an integer pArray
that points at the first element of nArray.

According to our naming convention, the p indicates pointer.

The function then loops through each element of the array (using nSize as the
number of entries in the array). On each loop, displayArray() outputs the cur-
rent integer, that is, the integer pointed at by pArray before incrementing the
pointer to the next entry in pArray.

This use of pointers to access arrays is nowhere more common than in the
accessing of character arrays.

Character arrays

Session 11 also explained how C++ uses a character array with a null character at
the end to serve as a quasistring variable type. C++ programmers often use charac-
ter pointers to manipulate such strings. The following code examples compare this
technique to the earlier technique of indexing in the array.

Pointer vs. array-based string manipulation

The concatString() function was declared in the Concatenate example in
Session 11 as:

void concatString(char szTarget[], char szSource[]);

The prototype declaration describes the type of arguments that the function
accepts, as well as the return type. This declaration appears the same as a function
definition with no function body.

Note

Saturday Afternoon180

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 180

To find the null at the end of the szTarget array, the concatString() func-
tion iterated through szTarget string using the following while loop:

void concatString(char szTarget[], char szSource[])
{

// find the end of the first string
int nTargetIndex = 0;
while(szTarget[nTargetIndex])
{

nTargetIndex++;
}

// ...

Using the relationship between pointers and arrays, concatString() could
have been prototyped as follows:

void concatString(char* pszTarget, char* pszSource);

The sz refers to a string of characters that ends in a 0 (null).
The pointer version of concatString() contained in the program

ConcatenatePtr is written:

void concatString(char* pszTarget, char* pszSource)
{

// find the end of the first string
while(*pszTarget)
{

pszTarget++;
}

// ...

The while loop in the array version of concatString() looped until
szTarget[nTargetIndex] was equal to 0. This version iterates through the array
by incrementing nTargetIndex on each pass through the loop until the character
pointed at by pszTarget is null.

The expression ptr++ is a shortcut for ptr = ptr + 1.

Note

Session 14—A Few More Pointers 181

Part III–Saturday Afternoon
Session 14

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 181

Upon exiting the while loop, pszTarget points to the null character at the end
of the szTarget string.

It is no longer correct to say “the array pointed at by
pszTarget” because pszTarget no longer points to the
beginning of the array.

The complete concatString() example

The following is the complete ConcatenatePtr program:

1. // ConcatenatePtr - concatenate two strings
2. // with a “ - “ in the middle
3. // using pointer arithmetic
4. // rather than array subscripts
5. #include <stdio.h>
6. #include <iostream.h>
7.
8. void concatString(char* pszTarget, char* pszSource);
9.
10. int main(int nArg, char* pszArgs[])
11. {
12. // read first string...
13. char szString1[256];
14. cout << “Enter string #1:”;
15. cin.getline(szString1, 128);
16.
17. // ...now the second string...
18. char szString2[128];
19. cout << “Enter string #2:”;
20. cin.getline(szString2, 128);
21.
22. // ...concatenate a “ - “ onto the first...
23. concatString(szString1, “ - “);
24.
25. // ...now add the second string...
26. concatString(szString1, szString2);
27.
28. // ...and display the result
29. cout << “\n” << szString1 << “\n”;

Tip

Saturday Afternoon182

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 182

30.
31. return 0;
32. }
33.
34. // concatString - concatenate *pszSource onto the
35. // end of *pszTarget
36. void concatString(char* pszTarget, char* pszSource)
37. {
38. // find the end of the first string
39. while(*pszTarget)
40. {
41. pszTarget++;
42. }
43.
44. // tack the second to the end of the first
45. // (copy the null at the end of the source array
46. // as well - this terminates the concatenated
47. // array)
48. while(*pszTarget++ = *pszSource++)
49. {
50. }
51. }

The main() portion of the program does not differ from its array-based cousin.
The concatString() function is significantly different, however.

As noted, the equivalent declaration of concatString() is now based on char*
type pointers. In addition, the initial while() loop within concatString()
searches for the terminating null at the end of the pszTarget array.

The extremely compact loop that follows copies the pszSource array to the
end of the pszTarget array. The while() clause does all the work, executing as
follows:

1. Fetch the character pointed at by pszSource.

2. Increment pszSource to the next character.

3. Save the character in the character position pointed at by pszTarget.

4. Increment pszTarget to the next character.

5. Execute the body of the loop if the character is not null.

Session 14—A Few More Pointers 183

Part III–Saturday Afternoon
Session 14

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 183

After executing the empty body of the while() loop, control passes back up
to the while() clause itself. This loop is repeated until the character copied to
*pszTarget is the null character.

Why bother with array pointers?

The sometimes-cryptic nature of pointer-based manipulation of character strings
might lead the reader to wonder why. That is, what advantage does the char*
pointer version of concatString() have over the easier-to-read index version?

The pointer version of concatenate() is much more common in
C++ programs than the array version from Session 11.

The answer is partially historic and partially human nature. As complicated as it
might appear to the human reader, a statement such as line 48 can be converted
to an amazingly small number of machine-level instructions. Older computer
processors were not very fast by today’s standards. When C, the progenitor of C++,
was created some 30 years ago, saving a few computer instructions was a big deal.
This gave C a big advantage over other languages of the day, notably Fortran,
which did not offer pointer arithmetic.

In addition, programmers like to generate clever program statements to combat
what can be a repetitively boring job. Once C++ programmers learn how to write
compact and cryptic but efficient statements, there is no getting them back to
searching arrays with indices.

Do not generate complex C++ expressions in order to create a
more efficient program. There is no obvious relationship between
the number of C++ statements and the number of machine
instructions generated. For example, the following two expres-
sions might generate the same amount of machine code:
*pszArray1++ = ‘\0’;

*pszArray2 = ‘\0’;
pszArray2 = pszArray2 + 1;

In the old days, when compilers were simpler, the first version
would definitely have generated fewer instructions.

Tip

Note

Saturday Afternoon184

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 184

Operations on different pointer types

The two examples of pointer manipulation shown so far, concatString(char*,
char*) and displayArray(int*), have a fundamental difference.

It is not too hard to convince yourself that szTarget + n points to szTarget
[n] when you consider that each char in szTarget occupies a single byte. After
all, if szTarget were stored at 0x100, then the sixth element is located at 0x105
(0x100 + 5 equals 0x105).

Because C++ arrays begin counting at 0, szTarget[5] is the sixth
element in the array.

It is not obvious that pointer addition works for nArray because each element
in nArray is an int that occupies 4 bytes. If the first element in nArray is located
at 0x100, then the sixth element is located at 0x114 (0x100 + (5 * 4) = 0x114).

Fortunately for us, in C++ array + n points at array[n] no matter how large a
single element of array might be.

A good analogy is a city block of houses. If all of the street
addresses on each street were numbered consecutively with no
gaps, then house number 1605 would be the sixth house of the
1600 block. In order not to confuse the mail carrier too much,
this relationship is true no matter how big the houses might be.

Differences between pointers and arrays

Despite the equivalent types, there are some differences between an array and
a pointer. For one, the array allocates space for the data whereas the pointer
does not:

void arrayVsPointer()
{

// allocate storage for 128 characters
char cArray[128];

// allocate space for a pointer
char* pArray;

}

Note

Note

Session 14—A Few More Pointers 185

Part III–Saturday Afternoon
Session 14

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 185

Here cArray occupies 128 bytes, the amount of storage required to store 128
characters. pArray occupies only 4 bytes, the amount of storage required by a
pointer.

The following function does not work:

void arrayVsPointer()
{

// access elements with an array
char cArray[128];
cArray[10] = ‘0’;
*(cArray + 10) = ‘0’;

// access an ‘element’ of an array
// which does not exist
char* pArray;
pArray[10] = ‘0’;
*(pArray + 10) = ‘0’;

}

The expressions cArray[10] and *(cArray + 10) are equivalent and legal. The
two expressions involving pArray don’t make sense. While they are both legal to
C++, the uninitialized pArray contains some random value. Thus, this second pair
of statements attempts to store a 0 character somewhere randomly in memory.

This type of mistake is generally caught by the CPU resulting in
the dreaded segment violation error that you see from time to
time issuing from your favorite applications.

A second difference is that cArray is a constant whereas pArray is not. Thus,
the following for loop used to initialize the array cArray does not work:

void arrayVsPointer()
{
char cArray[10];
for (int i = 0; i < 10; i++)
{

*cArray = ‘\0’; // this makes sense...
cArray++; // ...this does not

}
}

Tip

Saturday Afternoon186

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 186

The expression cArray++ makes no more sense than does 10++. The correct
version is:

void arrayVsPointer()
{
char cArray[10];
char* pArray = cArray;
for (int i = 0; i < 10; i++)
{

*pArray = ‘\0’; // this works great
pArray++;

}
}

Arguments to the Program

Arrays of pointers are another type of array of particular interest. This section
examines how to use these arrays to simplify your program.

Arrays of pointers

Just as arrays may contain other data types, an array may contain pointers. The
following declares an array of pointers to ints.

int* pnInts[10];

Given the above declaration, pnInt[0] is a pointer to an int value. Thus, the
following is true:

void fn()
{

int n1;
int* pnInts[3];
pnInts[0] = &n1;
*pnInts[0] = 1;

}

or

void fn()

Session 14—A Few More Pointers 187

Part III–Saturday Afternoon
Session 14

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 187

{
int n1, n2, n3;
int* pnInts[3] = {&n1, &n2, &n3};
for (int i = 0; i < 3; i++)
{

*pnInts[i] = 0;
}

}

or even

void fn()
{

int* pnInts[3] = {(new int),
(new int),
(new int)};

for (int i = 0; i < 3; i++)
{

*pnInts[i] = 0;
}

}

The latter declares three int objects off the heap.
The most common use for arrays of pointers is to create arrays of character

strings. The following two examples show why arrays of character strings are
useful.

Arrays of character strings

Suppose a function that returns the name of the month corresponding to an inte-
ger argument passed it is needed. For example, if the program is passed the value
1, it responds by returning a pointer to the string “January”.

The function could be written as follows:

// int2month() - return the name of the month
char* int2month(int nMonth)
{

char* pszReturnValue;

switch(nMonth)
{

Saturday Afternoon188

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 188

case 1: pszReturnValue = “January”;
break;

case 2: pszReturnValue = “February”;
break;

case 3: pszReturnValue = “March”;
break;

// ...and so forth...
default: pszReturnValue = “invalid”;

}
}

When passed a 1 for the month, control would pass to the first case statement
and the function would dutifully return a pointer to the string “January”; when
passed a 2, “February”; and so on.

The switch() control command is similar to a sequence of if
statements.

A more elegant solution uses the integer value for the month as an index to an
array of pointers to the names of the months. In use, this appears as follows:

// int2month() - return the name of the month
char* int2month(int nMonth)
{

// first check for a value out of range
if (nMonth < 1 || nMonth > 12)
{

return << “invalid”;
return;

}

// nMonth is valid - return the name of the month
char* pszMonths[] = {“invalid”,

“January”,
“February”,
“March”,
“April”,
“May”,
“June”,

Note

Session 14—A Few More Pointers 189

Part III–Saturday Afternoon
Session 14

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 189

“July”,
“August”,
“September”,
“October”,
“November”,
“December”};

return pszMonths[nMonth];
}

Here int2month() first checks to make sure that nMonth is a number between 1
and 12, inclusive (the default clause of the switch statement handled that for us
in the previous example). If nMonth is valid, the function uses it as an offset into
an array containing the names of the months.

The arguments to main()

You have seen another application of arrays of pointers to strings: the arguments
to main().

The arguments to a program are the strings that appear with the program name
when you launch it. For example, suppose I entered the following command at the
MS-DOS prompt:

MyProgram file.txt /w

MS-DOS executes the program contained in the file MyProgram.exe passing it
the arguments file.txt and /w.

The use of the term arguments is a little confusing. The argu-
ments to a program and the arguments to a C++ function follow
a different syntax but the meaning is the same.

Consider the following simple program:

// PrintArgs - write the arguments to the program
// to the standard output
#include <stdio.h>
#include <iostream.h>

int main(int nArg, char* pszArgs[])
{

// print a warning banner

Note

Saturday Afternoon190

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 190

cout << “The arguments to “ << pszArgs[0] << “\n”;

// now write out the remaining arguments
for (int i = 1; i < nArg; i++)
{

cout << i << “:” << pszArgs[1] << “\n”;
}

// that’s it
cout << “That’s it\n”;
return 0;

}

As always, the function main() accepts two arguments. The first argument is an
int that I have called nArgs. This variable is the number of arguments passed to
the program. The second argument is an array of pointers of type char* that I
have called pszArgs. Each of these char* elements points to an argument passed
to the program.

Consider the program PrintArgs. If I invoke the program

PrintArgs arg1 arg2 arg3 /w

from the command line of an MS-DOS window, nArgs would be 5 (one for each
argument). The first argument is the name of the program itself. Thus, pszArgs[0]
points to PrintArgs. The remaining elements in pszArgs point to the program
arguments. The element pszArgs[1] points to arg1, pszArgs[2] to arg2, and so
on. Because MS-DOS does not place any significance on /w, this string is also
passed as an argument to be processed by the program.

The same is not true of the redirection symbols “<”, “>” and “|”.
These are significant to MS-DOS and are not passed to the
program.

There are several ways to pass arguments to a function under test. The easiest
way is to simply execute the program from the MS-DOS prompt. Both the Visual
C++ and rhide debuggers provide a mechanism for passing arguments during
debug.

In Visual C++, select the Debug tab in the Project Settings dialog box. Input
your arguments in the Program Arguments edit window as shown in Figure 14-3.
The next time you start the program, Visual C++ passes these arguments.

Note

Session 14—A Few More Pointers 191

Part III–Saturday Afternoon
Session 14

4689-9 ch14.f.qc 3/7/00 9:27 PM Page 191

In rhide, select Arguments... under the Run menu. Enter any arguments in the
edit window that appears. This is demonstrated in Figure 14-4.

Figure 14-3
Visual C++ uses the Project Settings to pass arguments to the program
under debug.

Figure 14-4
In rhide, the program arguments are found in the Run menu.

Saturday Afternoon192

4689-9 ch14.f.qc 3/7/00 9:28 PM Page 192

REVIEW

All languages base array indexing upon simple math operations on pointers; how-
ever, by allowing the programmer to have direct access to these types of opera-
tions, C++ gives the programmer tremendous semantic freedom. The C++
programmer can examine and use the relationship between the manipulation of
arrays and pointers to her own advantage.

In this session you saw that

� Indexing in an array involves simple mathematical operations performed
on pointers. C++ is practically unique in enabling the programmer to per-
form these operations himself or herself.

� Pointer operations on character arrays offered the greatest possibility for
performance improvement in the early C and C++ compilers. Whether this
is still true is debatable; however, the use of character pointers is a part of
everyday life now.

� C++ adjusts pointer arithmetic to account for the size of the different types
of objects pointed at. Thus, while incrementing a character pointer might
increase the value of the pointer by 1, incrementing a double pointer
would increase the value by 8. Incrementing the pointer of class object
might increase the address by hundreds of bytes.

� Arrays of pointers can add significant efficiencies to a program for func-
tions which convert an integer value to some other constant type, such as
a character string or a bit field.

� Arguments to a program are passed to the main() function as an array of
pointers to character strings.

QUIZ YOURSELF

1. If the first element of an array of characters c[] is located at address
0x100, what is the address of c[2]? (See “Operations on Pointers.”)

2. What is the index equivalent to the pointer expression *(c + 2)? (See
“Pointer vs. Array-Based String Manipulation.”)

3. What is the purpose of the two arguments to main()? (See “The
Arguments to main().”)

Session 14—A Few More Pointers 193

Part III–Saturday Afternoon
Session 14

4689-9 ch14.f.qc 3/7/00 9:28 PM Page 193

4689-9 ch14.f.qc 3/7/00 9:28 PM Page 194

