
Session Checklist

✔ Declaring and using pointers to class objects
✔ Passing objects using pointers
✔ Allocating objects off of the heap
✔ Creating and manipulating linked lists
✔ Comparing linked list of objects to arrays of objects

S ession 12 demonstrated how combining the array and the class structures
into arrays of objects solved a number of problems. Similarly, the introduc-
tion of pointers to objects solves some problems not easily handled by arrays

of class objects.

Pointers to Objects

A pointer to a programmer defined structure type works essentially the same as a
pointer to an intrinsic type:

int* pInt;
class MyClass

S E S S I O N

Pointers to Objects

15

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 195

{
public:

int n1;
char c2;

};
MyClass mc;
MyClass* pMS = &mc;

The type of pMS is “pointer to MyClass,” which is also written
MyClass*.

Members of such an object may be accessed as follows:

(*pMS).n1 = 1;
(*pMS).c2 = ‘\0’;

Literally, the first expression says, “assign 1 to the member n1 of the MS object
pointed at by pMS.”

The parentheses are required because “.” has higher precedence
than “*”. The expression *mc.pN1 means “the integer pointed at
by the pN1 member of the object mc.

Just as C++ defines a shortcut for use with arrays, C++ defines a more conve-
nient operator for accessing members of an object. The -> operator is defined as
follows:

(*pMS).n1 is equivalent to pMS->n1

The arrow operator is used almost exclusively because it is easier to read; how-
ever, the two forms are completely equivalent.

Passing objects

A pointer to a class object can be passed to a function in the same way as simple
pointer type.

// PassObjectPtr - demonstrate functions that
// accept an object pointer
#include <stdio.h>

Tip

Note

Saturday Afternoon196

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 196

#include <iostream.h>

// MyClass - a meaningless test class
class MyClass
{

public:
int n1;
int n2;

};

// myFunc - pass by value version
void myFunc(MyClass mc)
{

cout << “In myFunc(MyClass)\n”;
mc.n1 = 1;
mc.n2 = 2;

}

// myFunc - pass by reference
void myFunc(MyClass* pMS)
{

cout << “In myFunc(MyClass*)\n”;
pMS->n1 = 1;
pMS->n2 = 2;

}

int main(int nArg, char* pszArgs[])
{

// define a dummy object
MyClass mc = {0, 0};
cout << “Initial value = \n”;
cout << “n1 = “ << mc.n1 << “\n”;

// pass by value
myFunc(mc);
cout << “Result = \n”;
cout << “n1 = “ << mc.n1 << “\n”;

// pass by reference
myFunc(&mc);

Session 15—Pointers to Objects 197

Part III–Saturday Afternoon
Session 15

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 197

cout << “Result = \n”;
cout << “n1 = “ << mc.n1 << “\n”;
return 0;

}

The main program creates an object of class MyClass. The object is first passed
to the function myFunc(MyClass) and then its address to the function myFunc
(MyClass*). Both functions change the value of the object — only the changes
made from within myFunc(MyClass*) “stick.”

In the call to myFunc(MyClass), C++ makes a copy of the object. Changes to mc
in this function are not copied back to main(). The call to myFunc(MyClass*)
passes an address to the original object in main(). The object retains any changes
when control returns to main().

This copy versus original comparison is exactly analogous to a function such as
fn(int) versus fn(int*).

Besides retaining changes, passing a 4-byte pointer, rather than
creating a copy of the entire object, may be significantly faster.

References

You can use the reference feature to let C++ perform some of the pointer
manipulation:

// myFunc - mc remains changed in calling function
void myFunc(MyClass& mc)
{

mc.n1 = 1;
mc.n2 = 2;

}

int main(int nArgs, char* pszArgs[])
{

MyClass mc;
myFunc(mc);
// ...

Note

Saturday Afternoon198

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 198

You’ve already seen this feature. The ClassData example in
Session 12 used a reference to the class object in the call to
getData(NameDataSet&) in order that the data read could be
returned to the caller.

Return to the heap

One must be careful not to return a reference to an object defined locally to the
function:

MyClass* myFunc()
{

MyClass mc;
MyClass* pMC = &mc;
return pMC;

}

Upon return from myFunc(), the mc object goes out of scope. The pointer
returned by myFunc() is not valid in the calling function. (See Session 13 for
details.)

Allocating the object off of the heap solves the problem:

MyClass* myFunc()
{

MyClass* pMC = new MyClass;
return pMC;

}

The heap is used to allocate objects in a number of different
situations.

The Array Data Structure

As a container of objects the array has a number of advantages including the capa-
bility to access a particular entry quickly and efficiently:

MyClass mc[100]; // allocate room for 100 entries
mc[n]; // access the n’th ms entry

Tip

Note

Session 15—Pointers to Objects 199

Part III–Saturday Afternoon
Session 15

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 199

Weighed against that are a number of disadvantages:
Arrays are of fixed length. You can calculate the number of array entries to allo-

cate at run time, but once created the size of the array can not be changed:

void fn(int nSize)
{

// allocate an array to hold n number of
// MyClass objects
MyClass* pMC = new MyClass[n];

// size of the array is now fixed and cannot
// be changed

// ...
}

In addition, each entry in the array must be of exactly the same type. It is not
possible to mix objects of class MyClass and YourClass in the same array.

Finally, it is difficult to add an object to the middle of an array. To add or
remove an object, the program must copy each of the adjoining elements up or
down in order to make or remove a gap.

There are alternatives to the array that do not suffer from these limitations.
The most well-known of these is the linked list.

Linked Lists

The linked list uses the same principle as the “holding hands to cross the street”
exercise when you were a child. Each object contains a link to the next object in
the chain. The “teacher,” otherwise known as the head pointer, points to the first
element in the list.

A linkable class is declared as follows:

class LinkableClass
{

public:
LinkableClass* pNext;

// other members of the class
};

Saturday Afternoon200

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 200

Here pNext points to the next entry in the list. This is shown in Figure 15-1.

Figure 15-1
A linked list consists of a number of objects, each of which points to the
next element in the list.

The head pointer is simply a pointer of type LinkableClass*:

LinkableClass* pHead = (LinkableClass*)0;

Always initialize any pointer to 0. Zero, generally known as null
when used in the context of pointers, is universally known as the
“nonpointer.” In any case, referring to address 0 will always
cause the program to halt immediately.

The cast from the int 0 to LinkableClass* is not necessary. C++
understands 0 to be of all types, sort of the “universal pointer.”
However, I find it a good practice.

Tip

Note

pNext

pHead

pNext

pNext

Session 15—Pointers to Objects 201

Part III–Saturday Afternoon
Session 15

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 201

Adding to the head of a linked list

To see how linked lists work in practice consider the following simple function
which adds the argument passed it to the beginning of the list:

void addHead(LinkableClass* pLC)
{

pLC->pNext = pHead;
pHead = pLC;

}

The process is shown graphically in Figure 15-2. After the first line, the *pLC
object points to the first object in the list (the same one pointed at by pHead),
shown here as step A. After the second statement, the head pointer points to the
object passed, *pLC shown in step B.

Figure 15-2
Adding an object to the head of a linked list is a two-step process.

pNext

pHead

pLC

ø

pNext

pNext

Saturday Afternoon202

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 202

Other operations on a linked list

Adding an object to the head of a list is the simplest of the operations on a linked
list. Adding an element to the end of the list is a bit trickier:

void addTail(LinkableClass* pLC)
{

// start with a pointer to the beginning
// of the linked list
LinkableClass* pCurrent = pHead;

// iterate through the list until we find
// the last object in the list - this will
// be the one with the null next pointer
while(pCurrent->pNext != (LinkableClass*)0)
{

// move pCurrent over to the next entry
pCurrent = pCurrent->pNext;

}

// now make that object point to LC
pCurrent->pNext = pLC;

// make sure that LC’s next pointer is null
// thereby marking it as the last element in
// the list
pLC->pNext = (LinkableClass*)0;

}

The addTail() function begins by iterating through the loop looking for the
entry who’s pNext pointer is null — this is the last entry in the list. With that in
hand, addTail() links the *pLC object to the end.

(Actually, as written addTail() has a bug. A special test must be added for
pHead itself being null, indicating that the list was previously empty.)

A remove() function is similar. This function removes the specified object from
the list and returns a 1 if successful or a 0 if not.

int remove(LinkableClass* pLC)
{

LinkableClass* pCurrent = pHead;

Session 15—Pointers to Objects 203

Part III–Saturday Afternoon
Session 15

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 203

// if the list is empty, then obviously
// we couldn’t find *pLC in the list
if (pCurrent == (LinkableClass*)0)
{

return 0;
}

// iterate through the loop looking for the
// specified entry rather than the end of
// the list
while(pCurrent->pNext)
{

// if the next entry is the *pLC object...
if (pLC == pCurrent->pNext)
{

// ...then point the current entry at
// the next entry instead
pCurrent->pNext = pLC->pNext;

// not abolutely necessary, but remove
// the next object from *pLC so as not
// to get confused
pLC->pNext = (LinkableClass*)0;
return 1;

}
}
return 0;

}

The remove() function first checks to make sure that the list is not empty — if
it is, remove() returns a fail indicator because obviously the *pLC object is not
present if the list is empty. If the list is not empty, remove() iterates through
each member until it finds the object that points to *pLC. If it finds that object,
remove() moves the pCurrent->pNext pointer around *pLC. This process is shown
graphically in Figure 15-3.

Saturday Afternoon204

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 204

Figure 15-3
“Wire around” an entry to remove it from a linked list.

Properties of linked lists

Linked lists are everything that arrays are not. Linked lists can expand and con-
tract at will as entries are added and removed. Inserting an object in the middle
of a linked list is quick and simple — existing members do not need to be copied
about. Similarly, sorting elements in a linked list is much quicker than the same
process on the elements of an array.

On the negative side of the ledger, finding a member in a linked list is not
nearly as quick as referencing an element in an array. Array elements are directly
accessible via the index — no similar feature is available for the linked list.
Programs must search sometimes the entire list to find any given entry.

pNext

pCurrent

ø

pNext

pNext

pNext

Session 15—Pointers to Objects 205

Part III–Saturday Afternoon
Session 15

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 205

A Linked NameData Program

The LinkedListData program shown here is a linked-list version of the array-
based ClassData program from Session 12.

// LinkedListData - store name data in
// a linked list of objects
#include <stdio.h>
#include <iostream.h>
#include <string.h>

// NameDataSet - stores name and social security
// information
class NameDataSet
{

public:
char szFirstName[128];
char szLastName [128];
int nSocialSecurity;

// the link to the next entry in the list
NameDataSet* pNext;

};

// the pointer to the first entry
// in the list
NameDataSet* pHead = 0;

// addTail - add a new member to the linked list
void addTail(NameDataSet* pNDS)
{

// make sure that our list pointer is NULL
// since we are now the last element in the list
pNDS->pNext = 0;

// if the list is empty,
// then just point the head pointer to the
// current entry and quit
if (pHead == 0)
{

Saturday Afternoon206

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 206

pHead = pNDS;
return;

}

// otherwise find the last element in the list
NameDataSet* pCurrent = pHead;
while(pCurrent->pNext)
{

pCurrent = pCurrent->pNext;
}

// now add the current entry onto the end of that
pCurrent->pNext = pNDS;

}

// getData - read a name and social security
// number; return null if no more to
// read
NameDataSet* getData()
{

// get a new entry to fill
NameDataSet* pNDS = new NameDataSet;

// read the first name
cout << “\nEnter first name:”;
cin > pNDS->szFirstName;

// if the name entered is ‘exit’...
if ((strcmp(pNDS->szFirstName, “exit”) == 0)

||
(strcmp(pNDS->szFirstName, “EXIT”) == 0))

{
// ...delete the still empty object...
delete pNDS;

// ...return a null to terminate input
return 0;

}

// read the remaining members

Session 15—Pointers to Objects 207

Part III–Saturday Afternoon
Session 15

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 207

cout << “Enter last name:”;
cin > pNDS->szLastName;

cout << “Enter social security number:”;
cin > pNDS->nSocialSecurity;

// zero the pointer to the next entry
pNDS->pNext = 0;

// return the address of the object created
return pNDS;

}

// displayData - output the index’th data set
void displayData(NameDataSet* pNDS)
{

cout << pNDS->szFirstName
<< “ “
<< pNDS->szLastName
<< “/”
<< pNDS->nSocialSecurity
<< “\n”;

}

int main(int nArg, char* pszArgs[])
{

cout << “Read name/social security information\n”
<< “Enter ‘exit’ for first name to exit\n”;

// create (another) NameDataSet object
NameDataSet* pNDS;
while (pNDS = getData())
{

// add it onto the end of the list of
// NameDataSet objects
addTail(pNDS);

}

// to display the objects, iterate through the
// list (stop when the next address is NULL)

Saturday Afternoon208

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 208

cout << “Entries:\n”;
pNDS = pHead;
while(pNDS)
{

// display current entry
displayData(pNDS);

// get the next entry
pNDS = pNDS->pNext;

}
return 0;

}

Although somewhat lengthy, the LinkedListData program is relatively simple.
The main() function begins by calling getData() to fetch another NameDataSet
entry from the user. If the user enters exit, then getData() returns a null. main()
calls addTail() to add the entry returned from getData() to the end of the
linked list.

After there are no more NameDataSet objects forthcoming from the user,
main() iterates through the list, displaying each using the displayData()
function.

The getData() function first allocates an empty NameDataSet object from the
heap. getData() continues by reading the first name of the entry to add. If the
user enters a first name of exit or EXIT, the function deletes the object and returns
a null to the caller. getData() continues by reading the last name and social secu-
rity number. Finally, getData() zeroes out the pNext pointer before returning.

Never leave link pointers uninitialized. Use the old programmer’s
wives tale: “Zero them out when in doubt.” (All wives of old
programmers say that.)

The addTail() function appearing here is similar to the addTail() function
demonstrated earlier in the chapter. Unlike that earlier version, this addTail()
checks whether the list is empty before starting. If pHead is null, then addTail()
points it at the current entry and terminates.

The displayData() function is a pointer-based version of the earlier
displayData() functions.

Tip

Session 15—Pointers to Objects 209

Part III–Saturday Afternoon
Session 15

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 209

Other Containers

A container is a structure designed to contain objects. Arrays and linked lists are
specific instances of containers. The heap is also a form of container; it contains a
separate block of memory that is available to your program.

You may have heard of other types of containers including the FIFO (first-in-
first-out) and the LIFO (last-in-first-out), also known as the stack. These provide
two functions, one to add and the other to remove objects. FIFO removes the oldest
object, while LIFO removes the most recent object.

REVIEW

Creating pointers to class objects makes it possible to modify the value of class
objects from within a function. Passing a reference to a class object is also consid-
erably more efficient than passing a class object by reference. However, adding a
pointer data member to a class introduces the possibility of linking objects from
one object to another into a linked list. The linked list data structure offers certain
advantages over arrays while giving up other efficiencies.

� Pointers to class objects work in essentially the same way as pointers to
other data types. This includes the capability to pass objects by reference
to functions.

� A pointer to a local object has no meeting once control passes from the
function. Objects allocated off the heap do not have scope limitations and,
therefore, can be passed from function to function. However, it is incum-
bent upon the programmer to remember to return objects back to the heap
or face fatal and difficult-to-trace memory leaks.

� Objects can be strung together in linked lists if the class includes a pointer
to an object of its own type. It is easy to remove and add objects to linked
lists. Although not demonstrated here, sorting the objects in a linked list
is also easier than sorting an array. Object pointers are also useful in the
creation of other types of containers not demonstrated here.

Saturday Afternoon210

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 210

QUIZ YOURSELF

1. Given the following:

class MyClass
{

int n;
}
MyClass* pM;

how would you reference the data member m from the pointer pM?
(See “Pointers to Objects.”)

2. What is a container? (See “Other Containers.”)

3. What is a linked list? (See “Linked Lists.”)

4. What is a head pointer? (See “Linked Lists.”)

Session 15—Pointers to Objects 211

Part III–Saturday Afternoon
Session 15

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 211

4689-9 ch15.f.qc 3/7/00 9:28 PM Page 212

