
Session Checklist

✔ Stepping through a program
✔ Setting breakpoints
✔ Viewing and modifying variables
✔ Debugging a program using the debugger

S ession 10 presented a technique for debugging programs based on writing
key data to cout standard output. We used this so-called write-statement
technique to debug the admittedly very simple ErrorProgram example.

For small programs the write statement technique works reasonably well. Problems
with this approach don’t really become obvious until the size of the program grows
beyond the simple programs you’ve seen so far.

In larger programs, the programmer often doesn’t generally know where to
begin adding output statements. The constant cycle of add write statements,
execute the program, add write statements, and on and on becomes tedious.
Further, in order to change an output statement, the programmer must rebuild
the entire program. For a large program, this rebuild time can itself be significant.

A second, more sophisticated technique is based on a separate utility known as
a debugger. This approach avoids many of the disadvantages of the write-statement

S E S S I O N

Debugging II

16

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 213

approach. This session introduces you to the use of the debugger by fixing
a small program.

Much of this part of the book is dedicated to studying the
programming capabilities made possible by pointer variables.
However, pointer capabilities come at a price: pointer errors are
easy to make and extremely hard to find. The write-statement
approach is not up to the task of finding and removing pointer
problems. Only a good debugger can ferret out such errors.

Which Debugger?

Unlike the C++ language, which is standardized across manufacturers, each
debugger has its own command set. Fortunately, most debuggers offer the same
basic commands. The commands we need are available in both the Microsoft Visual
C++ and the GNU C++ rhide environments. Both environments offer the basic com-
mand set via drop-down menus. In addition, both debuggers offer quick access
to common debugger commands via the function keys. Table 16-1 lists these
commands in both environments.

For the remainder of this session, I refer to the debug commands by name.
Use Table 16-1 to find the corresponding keystroke to use.

Table 16-1
Debugger Commands for Microsoft Visual C++ and GNU rhide

Command Visual C++ GNU C++ (rhide)

Build Shift+F8 F9

Step in F11 F7

Step over F10 F8

View variable see text Ctl+F4

Set breakpoint F9 Ctl+F8

Add watch see text Ctl+F7

Go F5 Ctl+F9

View User Screen Click on Program Window Alt+F5

Program reset Shift+F5 Ctl+F2

Note

Saturday Afternoon214

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 214

To avoid confusion over the slight differences that exist between the two
debuggers, I describe the debug process I used with rhide first. I then debug
the program using more or less the same steps with the Visual C++ debugger.

The Test Program

I wrote the following “buggy” program. Writing a buggy program is particularly
easy for me because my programs rarely work the first time.

This file is contained on the accompanying CD-ROM in the file
Concatenate (Error).cpp.

// Concatenate - concatenate two strings
// with a “ - “ in the middle
// (this version crashes)
#include <stdio.h>
#include <iostream.h>

void concatString(char szTarget[], char szSource[]);

int main(int nArg, char* pszArgs[])
{

cout << “This program concatenates two strings\n”;
cout << “(This version crashes.)\n\n”;

// read first string...
char szString1[256];
cout << “Enter string #1:”;
cin.getline(szString1, 128);

// ...now the second string...
char szString2[128];
cout << “Enter string #2:”;
cin.getline(szString2, 128);

// ...concatenate a “ - “ onto the first...
concatString(szString1, “ - “);

CD-ROM

Session 16—Debugging II 215

Part III–Saturday Afternoon
Session 16

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 215

// ...now add the second string...
concatString(szString1, szString2);

// ...and display the result
cout << “\n” << szString1 << “\n”;

return 0;
}

// concatString - concatenate the string szSource
// to the end of szTarget
void concatString(char szTarget[], char szSource[])
{

int nTargetIndex;
int nSourceIndex;

// find the end of the first string
while(szTarget[++nTargetIndex])
{
}

// tack the second to the end of the first
while(szSource[nSourceIndex])
{

szTarget[nTargetIndex] =
szSource[nSourceIndex];

nTargetIndex++;
nSourceIndex++;

}
}

The program builds without problem. I next execute the program. When it asks
for string #1, I enter this is a string. For string #2, I enter THIS IS A STRING. Rather
than generate the proper output, however, the program terminates with an exit
code of 0xff. I click OK. In an attempt to offer some solace, the debugger opens
the Message Window underneath the edit window shown in Figure 16-1.

The first line of the message window indicates that rhide thinks that the error
occurred on or about line 46 of the module Concatenate(error1). In addition,
the function that crashed was called from line 29 of the same module. This would
seem to indicate that the initial while loop within concatString() is faulty.

Saturday Afternoon216

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 216

Figure 16-1
The rhide debugger gives some hint as to the source of the error when a
program crashes.

Because I don’t see any problem with the statement, I decide to bring the rhide
debugger to my aide.

Actually, I see the problem based on the information that rhide
has already provided, but work with me here.

Single-Stepping Through a Program

I press Step Over to begin debugging the program. rhide opens an MS-DOS window
as if it were about to execute the program; however, before the program can execute,
the debugger closes the program window and displays the program edit window with
the first executable line of the program highlighted.

An executable statement is a statement other than a declaration or a comment.
An executable statement is one that generates machine code when compiled.

The debugger has actually executed the program up through the first line of
the main() function and then snatched control of the program. The debugger is
waiting for you to decide what to do next.

By repetitively pressing Step Over I can execute through the program until it
crashes. This should tell me a lot about what went wrong.

Executing a program one line at a time is commonly known as single-stepping
the program.

Note

Session 16—Debugging II 217

Part III–Saturday Afternoon
Session 16

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 217

When I try to Step Over the cin.getline() command, the debugger does not
take control back from MS-DOS window as it normally would. Instead, the program
appears to be frozen at the prompt to enter the first string.

On reflection, I realize that the debugger does not take control back from the
program until the C++ statement finishes executing — the statement containing the
call to getline() cannot finish until I enter a string of text from the keyboard.

I enter a line of text and press Enter. The rhide debugger stops the program at
the next statement, the cout << “Enter string #2”. Again I single–step, entering
the second line of text in response to the second call to getline().

If the debugger seems to halt without returning when single-
stepping through a program, your program is waiting for some-
thing to happen. Most likely, the program is waiting for input,
either from you or from external device.

Eventually I single-step down to the call to concatString(), as shown in
Figure 16-2. When I try to Step Over the call, however, the program crashes
as before.

Figure 16-2
Something in the concatString() function causes the program to crash.

This doesn’t tell me a lot more than I knew before. What I need is to be able to
execute into the function rather than simply “stepping over” it.

Single-Stepping into a Function

I decide to start over. First, I press Program Reset in order to start the debugger at
the beginning of the program.

Tip

Saturday Afternoon218

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 218

Always remember to press Program Reset before starting over.
It doesn’t hurt to press the key too often. You might get into the
habit of entering Program Reset before starting in the debugger
every time.

Again, I single-step through the program using the Step Over key until I reach
the call to concatString(). This time rather than step over the call, I use the
Step In command to move into the function. Immediately the pointer moves to
the first executable line in concatString() as shown in Figure 16-3.

There is no difference between the Step Over and Step In
commands when not executing a function call.

Figure 16-3
The Step In command moves control to the first executable line in
concatString().

If you accidentally Step In to a function that you did not mean
to, the debugger may ask you for the source code to some file
that you’ve never heard of before. This asked-for file is the
library module that contains the function you just stepped into.
Press Cancel to view a listing of machine instructions, which are
not very useful to even the most hardened techies. To return to
sanity, open the edit window, set a break point as described in
the next section to the statement after the call, and press Go.

Tip

Tip

Tip

Session 16—Debugging II 219

Part III–Saturday Afternoon
Session 16

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 219

With high hopes, I press the Step Over key to execute the first statement in the
function. The rhide debugger responds by reporting a Segmentation violation as
shown in Figure 16-4.

Figure 16-4
Single-stepping the first line of the concatString() function generates a
Segmentation violation.

A segmentation violation generally indicates that the program
has accessed an invalid section of memory either because a
pointer has gone awry or because an array is being addressed
way beyond its bounds. To keep things interesting, let’s pretend
that I don’t know that.

Now I know for sure that something about the while loop is not correct and
that executing it even the first time crashes the program. To find out what it is,
I need to stop the program right before it executes the offending line.

Using Breakpoints

Again, I press Program Reset to move the debugger back to the beginning of the
program. I could single-step back through the program to the while loop as I did
before. Instead, I decide to employ a shortcut. I place the cursor on the while state-
ment and enter the Set breakpoint command. The editor highlights the statement
in red as shown in Figure 16-5.

Tip

Saturday Afternoon220

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 220

Figure 16-5
The breakpoint command

A breakpoint tells the debugger to halt on that statement if control ever passes
this way. A breakpoint enables the program to execute normally up to the point
that we want to take control. Breakpoints are useful either when we know where
to stop or when we want the program to execute normally until it’s time to stop.

With the breakpoint set, I press Go. The program appears to execute normally
up to the point of the while call. At that point, the program obediently jumps
back to the debugger.

Viewing and Modifying Variables

There isn’t much point in executing the while statement again—I know that it will
crash. I need more information about what the program is doing to determine why
it crashed. For example, I would like to see the value of nTargetIndex immediately
prior to the execution of the while loop.

First, I double-click the variable name nTargetIndex. Next, I press View Variable.
A window appears with the name nTargetIndex in the upper field. I click Eval in
order to find the current value of the variable. The results, which are shown in
Figure 16-6, are obviously nonsensical.

Looking back at the C++ code, I realize that I neglected to initialize either the
nTargetIndex or nSourceIndex variables. To test this theory, I enter a 0 in the
New Value window and click Change. I repeat the process for nSourceIndex. I then
close the window and click Step Over to continue executing.

Session 16—Debugging II 221

Part III–Saturday Afternoon
Session 16

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 221

Figure 16-6
The Evaluate and Modify window enables the programmer to evaluate and
optionally change the value of in-scope variables.

With the index variables initialized, I single-step into the while loop. The
program does not crash. Each Step Over or Step In command executes one iteration
of the while loop. Because the cursor ends up right where it started, there appears
to be no change; however, after one loop nTargetIndex has incremented to 1.

Because I don’t want to go through the work of reevaluating nTargetIndex on
each iteration, I double-click on nTargetIndex and enter the Add Watch command.
A window appears with the variable nTargetIndex and the value 1 to the right. I
press Step In a few more times. nTargetIndex increments on each iteration through
the loop. After several iterations, control eventually passes outside of the loop.

I set a breakpoint on the closing brace of the concatString function and press
Go. The program stops immediately prior to returning from the function.

To check the string generated, I double-click on szTarget string and press View
Variable. The results shown in Figure 16-7 are not what I expected.

The 0x6ccee0 is the address of the string in memory. This infor-
mation can be useful when tracking pointers. For example, this
information would be extremely helpful in debugging a linked-
list application.

It would appear as if the target string has not been updated, yet I know that
the second while loop was executed. On the off chance that the second string is
in fact there, I attempt to look past the initial string. szTarget + 17 should be
the address of the first character after the null at the end of “this is a string,”
the value I entered. In fact, the “ - “ appears there, followed by a “T” which
appears to be incorrect. This is shown in Figure 16-8.

Tip

Saturday Afternoon222

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 222

Figure 16-7
The target string does not appear to be modified upon returning from the
concatString() function.

Figure 16-8
The target string appears appended to the source string in the wrong place.

After careful consideration, it is obvious that szSource was appended to
szTarget after the terminating null. In addition, it is clear that the resulting
target string was not terminated at all (hence the extra “T” at the end).

Modifying a string after the terminating null or forgetting to
terminate a string with a null are by far the two most common
string-related errors.

Tip

Session 16—Debugging II 223

Part III–Saturday Afternoon
Session 16

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 223

Because I now know two errors, I press Program Reset and fix the concatString()
function to append the second string in the correct place and to append a terminat-
ing null to the resulting string. The updated concatString() function appears
as follows:

void concatString(char szTarget[], char szSource[])
{

int nTargetIndex = 0;
int nSourceIndex = 0;

// find the end of the first string
while(szTarget[nTargetIndex])
{

nTargetIndex++;
}

// tack the second onto the end of the first
while(szSource[nSourceIndex])
{

szTarget[nTargetIndex] =
szSource[nSourceIndex];

nTargetIndex++;
nSourceIndex++;

}

// terminate the string properly
szTarget[nTargetIndex] = ‘\0’;

}

Because I suspect that I may still have a problem, I set a watch on szTarget and
nTargetIndex while executing the second loop. Sure enough, the source string
appears to be copied to the end of the target string as shown in Figure 16-9.
(The second call to concatString() is shown in Figure 16-9 because it is the
more obvious to understand.)

You really need to execute this one yourself. It’s the only way
you can get a feel for how neat it is to watch one string grow
while the other string shrinks on each iteration through the loop.

Tip

Saturday Afternoon224

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 224

Figure 16-9
The appropriate watch variables demonstrate how the source string is
appended to the end of the target string.

Reexamining the string immediately prior to adding the terminating null,
I notice that the szTarget string is correct except for the extra characters at
the end as shown in Figure 16-10.

Figure 16-10
Prior to adding the terminating null, the string resulting from concatenating
the target and source strings displays extra characters.

As soon as I press Step Over, the program adds the terminating null and the
noise characters disappear from the watch window.

Session 16—Debugging II 225

Part III–Saturday Afternoon
Session 16

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 225

Using the Visual C++ Debugger

The steps used to debug the Concatenate program using the Visual C++ debugger are
similar to those used under rhide. A major difference, however, is that the Visual C++
debugger opens the program under execution in a separate MS-DOS window rather
than as part of the debugger itself. When you press Go, a new tab appears along
the Windows Task Bar bearing the name of the program, in this case Concatenate.
The programmer can view the user window by selecting the program window.

A second difference is the way that the Visual C++ debugger handles the view-
ing of local variables. When execution is halted at a breakpoint, the programmer
may simply place the cursor on a variable. If the variable is in scope, the debugger
displays its value in a popup window as shown in Figure 16-11.

Figure 16-11
Visual C++ displays the value of a variable by placing the cursor on it.

In addition, the Visual C++ debugger offers a convenient view of all “local”
variables (these are variables declared locally to the function). Select View, then
Debug Windows, and finally Variables. From within the Variables Window, select
the Locals tab. Alternatively, you may enter Alt+4.This window even highlights
the variable which has changed since the last break point. Figure 16-12 shows
this window while single-stepping through the copy of the source to the
destination string.

The “I” characters at the end of szTarget reflect the fact that
the string has yet to be terminated.

Note

Saturday Afternoon226

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 226

Figure 16-12
The Variables window in the Visual C++ debugger tracks values of variables
as you single-step through the code.

REVIEW

Let’s compare the debugger approach to finding problems as shown here with the
write approach demonstrated in Session 10. The debugger approach is not as easy
to learn. I’m sure that many of the commands entered here seem foreign. Once
you feel comfortable with the debugger, however, you can use it to learn a great
deal about your program. The capability to move slowly through a program while
viewing and modifying different variables is a powerful feature.

I prefer to use the debugger the first time I execute a newly
written program. Stepping through a program provides a good
understanding of what’s really going on.

I was forced to restart the program several times using the debugger approach;
however, I only edited and rebuilt the program once, even though I found more
than one problem. This is a distinct advantage when debugging a large program
that may take several minutes to rebuild.

I have been on projects where it took the computer the entire
night to rebuild the system. While this was an extreme case,
5 to 30 minutes per rebuild is not out of the ordinary in real-
world applications.

Finally, the debugger gives you access to information that you couldn’t easily
see using the write approach. For example, viewing the contents of a pointer is
straightforward using the debugger. While possible, it is clumsy to repeatedly
write out address information.

Tip

Tip

Session 16—Debugging II 227

Part III–Saturday Afternoon
Session 16

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 227

QUIZ YOURSELF

1. What is the difference between Step Over and Step In?
(See “Single-Stepping into a Function.”)

2. What is a breakpoint? (See “Using Breakpoints.”)

3. What is a watch? (See “Viewing and Modifying Variables.”)

Saturday Afternoon228

4689-9 ch16.f.qc 3/7/00 9:28 PM Page 228

