
Session Checklist

✔ Turning classes into active agents through the addition of 
member functions

✔ Naming member functions
✔ Defining member functions both inside and outside of the class
✔ Calling a member function
✔ Accumulating class definitions in #include files
✔ Accessing this

R eal-world objects are independent agents (aside from their dependence on
things such as electricity, air, and so forth). A class should be as self-sufficient
as possible as well. It is impossible for a struct to be independent of its sur-

roundings. The functions that manipulate these classes must be external to the class
itself. Active classes have the capability to bundle these manipulator functions into
the class itself.

S E S S I O N

Active Classes

18

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 239



Class Review

A class enables you to group related data elements in a single entity. For example,
we might define a class Student as follows:

class Student
{
public:
int   nNSemesterHours;  // hours earned toward

// graduation
float gpa;

};

Every instance of Student contains its own two data elements:

void fn(void)
{

Student s1;
Student s2;
s1.nNSemesterHours = 1;  // this is not the same as...
s2.nNSemesterHours = 2;  // ...this one

}

The two nNSemesterHours differ because they belong to two different students
(s1 and s2).

A class with nothing but data members is also known as a structure and is
defined using the keyword struct. The struct keyword’s origins are in C. A
struct is identical to a class except that the public keyword is not necessary.

It is possible to define pointers to class objects and to allocate these objects off
of the heap as the following example illustrates:

void fn()
{

Student* pS1 = new Student;
pS1->nNSemesterHours = 1;

}

It is also possible to pass class objects to a function as follows:

void studentFunc(Student s);
void studentFunc(Student* pS);

Saturday Evening240

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 240



void fn()
{

Student s1 = {12, 4.0};
Student* pS = new Student;

fn(s1);            // call studentFunc(Student)
fn(ps);            // call studentFunc(Student*)

}

Limitations of Struct

Classes with only data members have significant limitations.
Programs exist in the real world. That is, any nontrivial program is designed 

to provide some real-world function. Usually, but not always, this function is 
some analog of what could have been done manually. For example, a program
might be used to calculate the grade point average (GPA) of a student. This 
function could be done by hand with pencil and paper, but it’s a lot easier 
and faster to do it electronically.

The closer that a program can be made to mimic life, the easier it is for the pro-
grammer to understand. Thus, if there is a type of thing called a “student,” then it
would be nice to have a Student class that had all the relevant properties of a stu-
dent. An instance of class Student would be analogous to an individual student.

A small class Student that describes the properties necessary to keep track of a
student’s GPA is found at the beginning of this lesson. The problem with this class 
is that it addresses only passive properties of the student. That is, a student has 
a number-of-classes-taken property and a GPA property. (The student also has a
name, social security number, and so on, but it’s OK to leave these properties 
off if they are not germane to the problem we’re trying to solve.) Students start
classes, drop classes, and complete classes. These are active properties of the class.

A functional fix

Of course, it is possible to add active properties to a class by defining a set of
functions to accompany the class:

// define a class to contain the passive properties of
// a student
class Student
{

Session 18—Active Classes 241

Part IV–Saturday Evening
Session 18

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 241



public:
int   nNSemesterHours;  // hours earned toward graduation
float gpa;

};

// a Course class
class Course
{
public:
char* pszName;
int   nCourseNumber;
int   nNumHours;

};

// define a set of functions to describe the active
// properties of a student
void startCourse(Student* pS,

Course* pC);
void dropCourse(Student* pS, int nCourseNumber);
void completeCourse(Student* pS, int nCourseNumber);

This solution does work — in fact, this is the solution adopted by nonobject-
oriented languages such as C. However, there is a problem with this solution.

The way this excerpt is written Student has only passive properties. There is a
nebulous “thing” out there that has active agents, such as startCourse(), that
operates on Student objects (and Course objects, for that matter). Furthermore,
this nebulous thing has no data properties of its own. This description, though
workable, does not correspond to reality.

We would like to take the active properties out of this undefined thing and
attribute them to the Student class itself so that each instance of Student is 
outfitted with a complete set of properties.

Adding active properties to the class rather than leaving them
unassigned may seem minor now, but it will grow in importance
as we make our way through the remainder of the book.

Note

Saturday Evening242

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 242



Defining an Active Class

The active properties of a student may be added to the Student class as follows:

class Student
{
public:
// the passive properties of a class
int   nNSemesterHours;  // hours earned toward graduation
float gpa;

// the active properties of a class
float startCourse(Course*);
void  dropCourse(int nCourseNumber);
void  completeCourse(int nCourseNumber);

};

The function startCourse(Course*) is a property of the class as are
nNSemesterHours and gpa.

A function that is a member of a class is called a member function.
For historical reasons that have little to do with C++, a member
function is also referred to as a method. Probably because the 
term method is the more confusing of the two, it is the term 
of preference.

There isn’t a name for functions or data that are not members of
a class . I refer to them as nonmembers. All the functions that
have been shown so far are nonmember functions because they
didn’t belong to a class.

C++ doesn’t care about the order of members within a class. The
data members may come before or after the member functions
or they appear mixed together. My personal preference is to put
the data members first with the member functions bringing up
the rear.

Tip

Note

Note

Session 18—Active Classes 243

Part IV–Saturday Evening
Session 18

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 243



Naming member functions

The full name of the function startCourse(Course*) is Student::startCourse
(Course*). The class name in front indicates that the function is a member of the
class Student. (The class name is added to the extended name of the function just 
as arguments are added to an overloaded function name.) We could have other 
functions called startCourse() that are members of other classes, such as
Teacher::startCourse(). A function startCourse() without any class 
name in front is a conventional nonmember function.

Actually, the full name of the nonmember function addCourse()
is ::addCourse(). The :: without any class name in front indi-
cates expressly that it is not a member of any class.

Data members are not any different than member functions with respect to
extended names. Outside a structure, it is not sufficient to refer to nSemester
Hours by itself. The data member nSemesterHours makes sense only in the 
context of the class Student. The extended name for nSemesterHours is
Student::nSemesterHours.

The :: is called the scope resolution operator because it indicates the class to
which a member belongs. The :: operator can be used with a nonmember function
as well as with a null structure name. The nonmember function startCourse()
should actually be referred to as ::startCourse().

The operator is optional except when two functions of the same name exist. 
For example:

float startCourse(Course*);

class Student
{
public:
int   nSemesterHours;  // hours earned toward graduation
float gpa;

// add a completed course to the record
float startCourse(Course* pCourse)
{

// ...whatever stuff...

startCourse(pCourse);// call global function(?)

Note

Saturday Evening244

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 244



// ...more stuff...
}

};

We want the member function Student::startCourse() to call the non-
member function ::startCourse(). Without the :: operator, however, a call 
to startCourse() from Student refers to Student::startCourse(). This
results in the function calling itself. Adding the :: operator to the front 
directs the call to the global version, as desired:

class Student 
{
public:
int   nSemesterHours;  // hours earned toward graduation
float gpa;

// add a completed course to the record
float startCourse(Course* pCourse)
{

::startCourse(pCourse);// call global function
}

};

Thus, the fully extended name of a nonmember function includes not only the
arguments, as we saw in Session 9, but also the class name to which the function
belongs.

Defining a Member Function in the Class

A member function can be defined either in the class or separately. Consider the
following in-class definition of a method addCourse(int, float):

class Student
{
public:
int   nSemesterHours;  // hours earned toward graduation
float gpa;

// add a completed course to the record
float addCourse(int hours, float grade)
{

Session 18—Active Classes 245

Part IV–Saturday Evening
Session 18

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 245



float weightedGPA;

weightedGPA = nSemesterHours * gpa;

// now add in the new course
nSemesterHours += hours;
weightedGPA += grade * hours;
gpa = weightedGPA / nSemesterHours;
return gpa;

}
};

The code for addCourse(int, float) doesn’t appear different than that of any
other function except that it appears embedded within the class.

Member functions defined in the class default to inline (see sidebar). Mostly,
this is because a member function defined in the class is usually very small, and
small functions are prime candidates for inlining.

Saturday Evening246

Inline Functions

Normally a function definition causes the C++ compiler to generate machine
code in one particular place in the executable program. Each time the func-
tion is called, C++ inserts a type of jump to the location where that function
is stored. When the function completes, control passes back to the point
where it was when it was originally called.

C++ defines a special type of function called an inline function. When an
inline function is invoked, C++ compiles the machine code into the spot of
the call. Each call to the inline function gets its own copy of machine code.

Inline functions execute more quickly because the computer does not
need to jump to some other location and set up before starting to exe-
cute. Keep in mind, however, that inline functions take up more space. 
If an inline function is called 10 times, the machine code is duplicated 
in 10 different locations.

Because the difference in execution speed is small between an inline
and a conventional, sometimes referred to an outline function, only
small functions are candidates for inlining. In addition, certain other
constructs force an inline function outline.

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 246



Writing Member Functions Outside of the Class

For larger functions, putting the code directly in the class definition can lead to
some very large, unwieldy class definitions. To prevent this, C++ lets us define
member functions outside of the class.

When written outside the class definition, our addCourse() method looks 
like this:

class Student
{
public:
int   nSemesterHours;  // hours earned toward graduation
float gpa;

// add a completed course to the record
float addCourse(int hours, float grade);

};
float Student::addCourse(int hours, float grade)
{

float weightedGPA;

weightedGPA = nSemesterHours * gpa;

// now add in the new course
nSemesterHours += hours;
weightedGPA += grade * hours;
gpa = weightedGPA / nSemesterHours;
return gpa;

}

Here we see that the class definition contains nothing more than a prototype
declaration for the function addCourse(). The actual function definition appears
separately.

A declaration defines the type of a thing. A definition defines
the contents of a thing.

Note

Session 18—Active Classes 247

Part IV–Saturday Evening
Session 18

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 247



The analogy with a prototype declaration is exact. The declaration in the struc-
ture is a prototype declaration and, like all prototype declarations, is required.

When the function was among its Student buddies in the class, it wasn’t necessary
to include the class name with the function name—the class name was assumed.
When the function is by itself, the fully extended name is required. It’s just like at 
my home. My wife calls me only by my first name (provided I’m not in the doghouse).
Among the family, the last name is assumed. Outside the family (and my circle of
acquaintances), others call me by my full name.

Include files

It is common to place class definitions and function prototypes in a file carrying the
extension .h separate from the .cpp file that contains the actual function definitions.
The .h file is subsequently “included” in the .cpp source file as follows.

The student.h include file is best defined as follows:

class Student
{
public:
int   nSemesterHours;  // hours earned toward graduation
float gpa;

// add a completed course to the record
float addCourse(int hours, float grade);

};

The student.cpp file would appear as follows:

#include “student.h”;
float Student::addCourse(int hours, float grade)
{

float weightedGPA;

weightedGPA = nSemesterHours * gpa;

// now add in the new course
nSemesterHours += hours;
weightedGPA += grade * hours;
gpa = weightedGPA / nSemesterHours;
return gpa;

}

Saturday Evening248

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 248



The #include directive says “replace this directive with the contents of the 
student.h file.”

The #include directive doesn’t have the format of a C++ statement
because it is interpreted by a separate interpreter that executes
before the C++ compiler.

Including class definitions and function prototypes in an include file enables
multiple C++ source modules to include the same definitions without the need to
repeat them. This reduces effort and, more important, it reduces the chances that
multiple source files will get out of synch.

Calling a Member Function

Before we look at how to call a member function, let’s review how to reference a
data member:

#include “student.h”
Student s;
void fn(void) 
{  // access one of the data members of s

s.nSemesterHours = 10;
s.gpa           = 3.0;

}

We must specify an object along with the member name when referencing an
object member. In other words, the following makes no sense:

#include “student.h”
void fn(void) 
{

Student s;

// access one of the data members of s
// neither of these is legal
nSemesterHours = 10;   // member of what object

// of what class?
Student::nSemesterHours = 10; // okay, I know the class

// but I still don’t know which
// object

Note

Session 18—Active Classes 249

Part IV–Saturday Evening
Session 18

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 249



s.nSemesterHours = 10; // this is OK
}

Member functions are invoked with an object just as data members are:

void fn()
{

Student s;

// reference the data members of the class
s.nSemesterHours = 10;
s.gpa           = 3.0;

// now access the member function
s.addCourse(3, 4.0);

}

Calling a member function without an object makes no more sense than refer-
encing a data member without an object. The syntax for calling a member function
looks like a cross between the syntax for accessing a data member and for calling a
conventional function.

Calling a member function with a pointer

The same parallel for the objects themselves can be drawn for pointers to objects.
The following references a data member of an object with a pointer:

#include “”student.h”

void someFn(Student *pS) 
{

// access the data members of the class
pS->nSemesterHours = 10;
pS->gpa           = 3.0;

// now access the member function
// (that is, call the function)
pS->addCourse(3, 4.0);

}

int main()
{

Saturday Evening250

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 250



Student s;

someFn(&s);
return 0;

}

Calling a member function with a reference to an object appears identical to
using the object itself. Remember that when passing or returning a reference as 
an argument to a function, C++ passes only the address of the object. In using a
reference, however, C++ dereferences the address automatically, as the following
example shows:

#include “student.h”

// same as before, but this time using references
void someFn(Student &refS)
{

refS.nSemesterHours = 10;
refS.gpa           = 3.0;
refS.addCourse(3, 4.0);  // call the member function

}

Student s;
int main()
{

someFn(s);
return 0;

}

Accessing other members from a member function

It is clear why you can’t access a member of a class without an object. You need 
to know, for example, which gpa from which Student object? Take a second look
at the definition of the member function Student::addCourse().This function 
is accessing class members without reference to an object in direct contradiction 
to my previous statement.

You still can’t reference a member of a class without an object; however, from
within a member function the object is taken to be the object on which the call
was made. It’s easier to see this with an example:

#include “student.h”
float Student::addCourse(int hours, float grade)

Session 18—Active Classes 251

Part IV–Saturday Evening
Session 18

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 251



{
float weightedGPA;
weightedGPA = nSemesterHours * gpa;

// now add in the new course
nSemesterHours += hours;
weightedGPA += hours * grade;
gpa = weightedGPA / nSemesterHours;
return gpa;

}

int main(int nArgs, char* pArgs[])
{

Student s;
Student t;

s.addCourse(3, 4.0);  // here’s an A+
t.addCourse(3, 2.5);  // give this guy a C
return 0;

}

When addCourse() is invoked with the object s, all of the otherwise unquali-
fied member references in addCourse() refer to s. Thus, nSemesterHours becomes
s.nSemesterHours, gpa becomes s.gpa. In the call t.addCourse() on the next
line, these same references refer to t.nSemesterHours and t.gpa instead.

The object with which the member function is invoked is the “current” object,
and all unqualified references to class members refer to this object. Put another
way, unqualified references to class members made from a member function are
always against the current object.

How does the member function know what the current object is? It’s not magic—
the address of the object is passed to the member function as an implicit and hidden
first argument. In other words, the following conversion occurs:

s.addCourse(3, 2.5);

is like

Student::addCourse(&s, 3, 2.5);

(You can’t actually use this interpretive syntax; this is just a way of understanding
what C++ is doing.)

Saturday Evening252

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 252



Inside the function, this implicit pointer to the current object has a name, in
case you need to refer to it. The hidden object pointer is called this, as in “Which
object? this object.” The type of this is always a pointer to an object of the appro-
priate class. Thus within the Student class, this is of type  Student*.

Anytime that a member function refers to another member of the same class
without providing an object explicitly, C++ assumes this. You also can refer to
this explicitly. We could have written Student::addCourse() as follows:

#include “student.h”
float Student::addCourse(int hours, float grade)
{

float weightedGPA;

// refer to ‘this’ explicitly
weightedGPA = this->nSemesterHours * this->gpa;

// same calculation with ‘this’ understood
weightedGPA = this->nSemesterHours * gpa;

// now add in the new course
this->nSemesterHours += hours;
weightedGPA += hours * grade;
this->gpa = weightedGPA / this->nSemesterHours;
return this->gpa;

}

Whether we explicitly include this or leave it implicit, as we did before, the
effect is the same.

Overloading Member Functions

Member functions can be overloaded in the same way that conventional functions
are overloaded. Remember, however, that the class name is part of the extended
name. Thus, the following functions are all legal:

class Student
{
public:
// grade - return the current grade point average
float grade();

Session 18—Active Classes 253

Part IV–Saturday Evening
Session 18

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 253



// grade - set the grade and return previous value
float grade(float newGPA);

// ...data members and stuff...
};

class Slope
{
public:
// grade - return the percentage grade of the slope
float grade();

// ...stuff goes here too...
};

// grade - return the letter equivalent of a numerical grade
char grade(float value);

int main(int nArgs, char* pArgs[])
{

Student s;
Slope o;

// invoke the different variations on grade()
s.grade(3.5);         // Student::grade(float)
float v = s.grade();  // Student::grade()
char c = grade(v);    // ::grade(float)
float m = o.grade();  // Slope::grade()
return 0;

}

Each call made from main() is noted in the comments with the extended name
of the function called.

When calling overloaded functions, both the arguments of the function and 
the type of the object (if any) with which the function is invoked are used to 
disambiguate the call.

The term disambiguate is object-oriented talk for “decide at compile time which
overloaded function to call.” One can also say that the calls are being resolved.

Saturday Evening254

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 254



In the example code segment, the first two calls to the member functions
Student::grade(float) and Student::grade() are differentiated by their
argument lists. The third call has no object, so it unambiguously denotes the
nonmember function grade(float). Because the final call is made with an
object of type Slope, it must refer to the member function Slope::grade().

REVIEW

The closer you can model the problem to be solved with C++ classes, the easier it is to
solve the problem. Those classes containing only data members can only model the
passive properties of objects. Adding member functions makes the class much more
like a real-world object in that it can now respond to the “outside world,” that is the
remainder of the program. In addition, the class can be made responsible for its own
health, in the same sense that real-world objects protect themselves.

� Members of a class can be functions as well as data. Such member functions
give the class an active aspect. The full name of a member function includes
the name of the class.

� Member functions may be defined either inside or outside the class. Member
functions written outside of the class are more difficult to associate with the
class, but avoid cluttering up the class definition.

� From within a member function, the current object is referred to by the
keyword this.

QUIZ YOURSELF

1. What’s wrong with defining functions external to the class that directly
manipulates class data members? (See “A Functional Fix.”)

2. A function that is a member of a class is known as a what? There are two
answers to this question. (See “Defining an Active Class.”)

3. Describe the significance of the order of the functions within a class. 
(See “Defining an Active Class.”)

4. If a class X has a member Y(int), what is the “full” name of the function?
(See “Writing Member Functions Outside of the Class.”)

5. Why is an include file called by that name? (See “Include Files.”)

Session 18—Active Classes 255

Part IV–Saturday Evening
Session 18

4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 255



4689-9 ch18.f.qc  3/7/00  9:29 PM  Page 256


