30 Min.
To Go

SESSION

Maintaining
Class Integrity

Session Checklist

0 Writing and using a constructor

0 Constructing data members

0 Writing and using a destructor

0 Controlling access to data members

trol over how it is created and how it is accessed. This Session examines the

Q n object cannot be made responsible for it's own well-being if it has no con-
facilities C++ provides for maintaining object integrity.

Creating and Destroying Objects

C++ can initialize an object as part of the declaration. For example:

class Student
{
public:
int semesterHours;

258 Saturday Evening

float gpa;

void fn()
{
Student s = {0, 0};
//...function continues...
}

Here fn() has total control of the Student object.

We could outfit the class with an initialization function that the application
calls as soon as the object is created. This gives the class control over how its data
members are initialized. This solution appears as follows:

class Student
{
public:
// data members
int semesterHours;
float gpa;

// member functions
// init - initialize an object to a valid state
void init()
{
semesterHours = 0;
gpa = 0.0;

b

void fn()
{
// create a valid Student object

Student s; //create the object...
s.init(); //...then initialize it in valid state

//...function continues...

Session 19—Maintaining Class Integrity 259

The problem with this “init” solution is that the class must rely on the applica-
tion to call the init() function. This is still not the solution we seek. What we
really want is a mechanism that automatically initializes an object when it is
created.

The constructor

C++ enables a class to assume responsibility for initializing its objects via a special
function called the constructor.

A constructor is a member function that is called automatically

when an object is created. Similarly, a destructor is called when
an object expires.

Note

C++ embeds a call to the constructor whenever an object is created. The con-
structor carries the same name as the class. That way, the compiler knows which
member function is the constructor.

The designers of C++ could have made up a different rule, such
as: “The constructor must be called init().”The Java language
uses just such a rule. A different rule wouldn’t make any differ-
Note ence, as long as the compiler could recognize the constructor
from among the other member functions.

With a constructor, the class Student appears as follows:

class Student
{
public:
// data members
int semesterHours;
float gpa;

// member functions
Student ()
{
semesterHours = 0;
gpa = 0.0;

6T UO0ISSas
Buiuang Aepinjes—A| 1ed

260 Saturday Evening

void fn()
{

Student s; //create an object and initialize it

//...function continues...
}

At the point of the declaration of s, the compiler inserts a call to the construc-
tor Student::Student().

This simple constructor was written as an inline member function. Constructors
can be written also as outline functions. For example:

class Student
{
public:
// data members
int semesterHours;
float gpa;

// member functions
Student();

Student::Student()
{
semesterHours = 0;
gpa = 0.0;
}
int main(int nArgc, char* pszArgs)
{
Student s; //create the object and initialize it
return 0;

}

I added a small main() function here so that you can execute this program. You
really should single-step this simple program in your debugger before going any
further.

As you single-step through this example, control eventually comes to rest at the
Student s; declaration. Press Step In one more time and control magically jumps
to Student::Student (). Continue single-stepping through the constructor. When
the function has finished, control returns to the statement after the declaration.

20 Min.
To Go

Session 19—Maintaining Class Integrity 261

Multiple objects can be declared on a single line. Rerun the single-step process
with fn() declared as follows:

int main(int nArgc, char* pszArgs)
{
Student s[5]; //create an array of objects

J

The constructor is invoked five times, once for each element in the array.

If you can’t get the debugger to work (or you just don’t want to
bother), add an output statement to the constructor so that
you can see output to the screen whenever the constructor is
invoked. The effect is not as dramatic, but it is convincing.

Limitations on the constructor

The constructor can only be invoked automatically. It cannot be called like a nor-
mal member function. That is, you cannot use something similar to the following
to reinitialize a Student object:

void fn()
{
Student s; //create and initialize the object

//...other stuff...
s.Student(); //reinitilize it; this doesn’t work

}

The constructor has no return type, not even void. The constructors you see
here also have void arguments.

The constructor with no arguments is known as the default or

void constructor.

Note

The constructor can call other functions. Thus, if you want to be able to reini-
tialize an object at will, write the following:

class Student
{
public:

6T UO0ISSas
Buiuang Aepinjes—A| 1ed

262 Saturday Evening

// data members
int semesterHours;
float gpa;

// member functions
// constructor - initialize the object automatically
when it is created
Student()
{
init();

// init - initialize the object
void init()
{

semesterHours = 0;

gpa = 0.0;

void fn()
{
Student s; //create and initialize the object

//...other stuff...
s.init(); //reinitilize it

}

Here the constructor calls a universally available init () function, which per-
forms the actual initialization.

Constructing data members

The data members of a class are created at the same time as the object itself. The
object data members are actually constructed in the order in which they appear
and immediately before the rest of the class. Consider the ConstructMembers pro-
gram in Listing 19-1. Write statements were added to the constructors of the indi-
vidual class so that you can see the order in which the objects are created.

Session 19—Maintaining Class Integrity 263

Listing 19-1
The ConstructMembers Program

// ConstructMembers - create an object with data members
// that are also objects of a class
#include <stdio.h>
#include <iostream.h>
class Student
{
public:
Student ()
{
cout << “Constructing student\n”;

class Teacher
{
public:
Teacher()
{

s

cout << “Constructing teacher\n”;

class TutorPair
{
public:
Student student;
Teacher teacher;
int noMeetings;

TutorPair()

{
cout << “Constructing tutor pair\n”;
noMeetings = 0;

Continued

6T UO0ISSas
Buiuang Aepinjes—A| 1ed

264 Saturday Evening

Listing 19-1 Continued

int main(int nArgc, char* pArgs[])
{

cout << “Creating a tutor pair\n”;
TutorPair tp;

cout << “Back in main\n”;
return 0;

}

Executing this program generates this output:

Creating a tutor pair
Constructing student
Constructing teacher
Constructing tutor pair
Back in main

Creating the object tp in main invokes the constructor for TutorPair automati-
cally. Before control passes to the body of the TutorPair constructor, however,
the constructors for the two member objects— student and teacher —are
invoked.

The constructor for Student is called first because it is declared first. Then the
constructor for Teacher is called. After these objects are constructed, control
returns to the open brace and the constructor for TutorPair is allowed to initial-
ize the remainder of the object.

It would not do for TutorPair to be responsible for initializing

student and teacher. Each class is responsible for initializing
its own objects.

Note

The destructor

Just as objects are created, so are they destroyed. If a class can have a constructor
to set things up, it should also have a special member function that’s called to
destruct, or take apart, the object.

The destructor is a special member function that is called when an object is
destroyed or, to use C++ parlance, is destructed.

Session 19—Maintaining Class Integrity 265

A class may allocate resources in the constructor; these resources need to be
deallocated before the object ceases to exist. For example, if the constructor opens
a file, the file needs to be closed. Or, if the constructor allocates memory from the
heap, this memory must be freed before the object goes away. The destructor
allows the class to do these clean-up tasks automatically without relying on the
application to call the proper member functions.

The destructor member has the same name as the class, but a tilde (~) precedes
it. Like a constructor, the destructor has no return type. For example, the class
Student with a destructor added appears as follows:

class Student
{
public:
// data members
// the roll up figures
int semesterHours;
float gpa;

// an array to hold each individual grade
int* pnGrades;

// member functions
// constructor - called when object created;

// initializes data members including
// allocating an array off of the heap
Student ()

{
semesterHours = 0;
gpa = 0.0;

// allocate room for 50 grades
pnGrades = new int[50];

// destructor - called when object destroyed to put the
!/ heap memory back
~Student()
{
//return memory to the heap
delete pnGrades;

6T UO0ISSas
Buiuang Aepinjes—A| 1ed

10 Min.
To Go

266 Saturday Evening

pnGrades = 0;

by

If more than one object is being destructed, then the destructors are invoked in
the reverse order from the order in which the constructors were called. This is also
true when destructing objects that have class objects as data members. Listing
19-2 shows the output from the program shown in Listing 19-1 with the addition
of destructors to all three classes.

Listing 19-2
Output of ConstructMembers After Destructors Are Added

Creating a tutor pair
Constructing student
Constructing teacher
Constructing tutor pair
Back in main
Destructing tutor pair
Destructing teacher
Destructing student

The entire program is contained on the accompanying CD-ROM.

The constructor for TutorPair is invoked at the declaration of tp. The Student
and Teacher data objects are created in the order that they are contained in
TutorPair before the body of TutorPair() is given control. Upon reaching the
close brace of main(), tp goes out of scope. C++ calls ~TutorPair to destruct tp.
After the destructor has finished disassembling the TutorPair object, ~Student
and ~Teacher destruct the data member objects.

Access Control

Initializing an object into a known state is only half the battle. The other half is
to make sure that external functions cannot “reach into” an object and diddle with
its data members.

Session 19—Maintaining Class Integrity 267

Allowing external functions access to the data members of a
class is akin to allowing me access to the internals of my

microwave. If | reach into the microwave and change the wiring, |
Note can hardly blame the designer if the oven catches fire.

The protected keyword

C++ also enables a class to declare members to be off limits to nonmember func-
tions. C++ uses the keyword protected to flag a set of class members as not being
accessible from functions external to the class.

A class member is protected if it can only be accessed from other
members of the class.

Note

The opposite of protected is public. A public member can be
accessed from both member and nonmember functions.

For example, in the following version of Student, only the functions
grade(double, int) and grade() are accessible to external functions.

// ProtectedMembers - demonstrate the use of
// protected members
#include <stdio.h>

#Hinclude <iostream.h>

// Student
class Student
{

protected:
double dCombinedScore;
int nSemesterHours;
public:
Student ()
{
dCombinedScore = 0;
nSemesterHours = 0;

6T UO0ISSas
Buiuang Aepinjes—A| 1ed

268 Saturday Evening

// grade - add in the effect of another course grade
double grade(double dNewGrade, int nHours)
{
// if the arguments represent legal values...
if (dNewGrade >= 0 && dNewGrade <= 4.0)
{
if (nHours >0 && nHours <= 5)
{
// ...update the GPA information
dCombinedScore += dNewGrade * nHours;
nSemesterHours += nHours;

}
return grade();

// grade - return the current GPA
double grade()

{
return dCombinedScore / nSemesterHours;

// semesterHours - return the number of semester
// hours the student has attended
// school

int semesterHours()

{

return nSemesterHours;

int main(int nArgc, char* pszArgs[])

// create a student object from the heap
Student* pS = new Student;

// add in a few grades
pS->grade(2.5, 3);

Session 19—Maintaining Class Integrity 269

pS->grade(4.0, 3);
pS->grade(3, 3);

// now retrieve the current GPA
cout << “Resulting GPA is * << pS->grade() << *\n”;

return 0;

}

This version of Student maintains two data members. dCombinedScore reflects
the sum of the weighted grades, while nSemesterHours reflects the total number
of semester hours completed. The function grade(double, int) updates both the
sum of the weighted grades and the number of semester hours. Its namesake func-
tion, grade(), returns the current GPA, which it calculates as the ratio of the
weighted grades and the total number of semester hours.

grade(double, int) adds the effect of a new course to the over-
all GPA whereas grade(void) returns the current GPA. This
dichotomy of one function updating a value while the other
simply returns it is very common.

A grade() function which returns the value of some data member is called an
access function because it provides access to the data member.

While certainly not foolproof, the grade(double, int) function demonstrates a
little of how a class can protect itself. The function runs a few rudimentary checks
to make sure that the data being passed it is reasonable. The Student class knows
that valid grades stretch from 0 to 4. Further, the class knows that the number of
semester hours for one course lies between 0 and 5 (the upper range is my own
invention).

The basic checks made by the grade() method, when added to the fact that the
data members are not accessible by outside functions, guarantees a certain amount
of data integrity.

There is another access control level called private. The distinc-

tion between private and protected will become clearer when we
discuss inheritance in Session 21.
Note

The member function semesterHours() does nothing more than return the
value of nSemesterHours.

A function that does nothing more than give external functions access to the
value of a data member is called an access function. An access function enables

6T UO0ISSas
Buiuang Aepinjes—A| 1ed

270 Saturday Evening

nonmember functions to read the value of a data member without the capability to
change it.

A function that can access the protected members of a class is called a trusted
function. All member functions are trusted. Nonmember functions can also be des-
ignated as trusted using the friendly keyword. A function that is friendly to a
class is trusted. All of the member functions of a friendly class are friendly. The
proper use of friendly is beyond the scope of this book.

Static data members

No matter how many members we had protected, our LinkList class in Session 15
would still have been vulnerable to outside functions through the global head
pointer. What we really want is to draw that pointer back into the protection of
the class where we could make it protected. However, we cannot use a normal data
member because these are created separately for each instance of LinkList —
there can be only one head pointer for the entire linked list. C++ provides a solu-
tion in the format of static data member.

A static data member is one that is not instanced separately for each object. All
objects of a given class share the same static data member.

The syntax for declaring a static data member is a bit tortured:

class LinkedList
{
protected:
// declare pHead to be a member of the class
// but common to all objects
static LinkedList* pHead;

// the standard pNext pointer is instanced separately
// for each object
LinkedList* pNext;

// addHead - add a data member to the beginning
// of the Tist

void addHead()

{

Session 19—Maintaining Class Integrity 271

// make the current entry point to the
// current beginning of the list
pNext = pHead;

// make the current head pointer point to
// the current object (this)
pHead = this;

// ...whatever else...
b

// now allocate a memory location to house the static
// data memory; be sure to initialize the static here
// because the object constructor will not handle it
LinkedList* LinkedList::pHead = 0;

The static declaration in the class makes pHead a member of the class but does
not allocate memory for it. That must be done outside of the class as shown.

The same function addHead () accesses pHead just as it would access any other
data member. First, it points the current object’s next pointer to the beginning of
the list— the entry pointed at by pHead. Second, it changes the head pointer to
point to the current entry.

Remember that the address of the “current entry” is referenced by the keyword

Done! this.
As simple as addHead () is, examine it very carefully: all objects

of class LinkedList refer to the same pHead member, whereas
each object has its own pNext pointer.

It is also possible to declare a member function static; this

book, however, does not cover such functions.

6T UO0ISSas
Buiuang Aepinjes—A| 1ed

272 Saturday Evening

REVIEW

The constructor is a special member function that C++ calls automatically when an
object is created, whether it's because a local variable goes into scope or when an
object is allocated off of the heap. It is the responsibility of the constructor to ini-
tialize the data members to a legal state. The data members of a class are con-
structed automatically before the class constructor is called. By comparison, C++
calls a special function known as the destructor when the object is to be
destroyed.

e The class constructor gives the class control over how the object is to be
created. This keeps the class object from starting life in an illegal state.
Constructors are declared the same as other member functions except that
they carry the same name as the class and have no return type (not even
void).

e The class destructor gives the class a chance to return any resources allo-
cated by the constructor. The most common such resource is memory.

e Declaring a member protected makes it inaccessible to untrusted member
functions. Member functions are automatically considered trusted.

QuiZ YOURSELF

1. What is a constructor? (See “The Constructor.”)

2. What is wrong with calling a function init() to initialize an object when
it is created? (See “The Constructor.”)

3. What is the full name of a constructor for the class Teacher? What is its
return type? (See “The Constructor.”)

4. What is the order of construction for object data members? (See
“Constructing Data Members.”)

5. What is the full name of the destructor for the class Teacher? (See “The
Destructor.”)

6. What is the significance of the keyword static when it is used in con-
nection with data members? (See “Static Data Members.”)

