30 Min.
To Go

SESSION

Inheritance

Session Checklist

0 Defining inheritance

O Inheriting a base class

0 Constructing the base class

0 Exploring the IS_A versus the HAS_A relationship

class of things to assume capabilities or properties from another class. For

example, I am a human. | inherit from the class Human certain properties,
such as my ability to converse intelligently (more or less)and my dependence on
air, water, and food. These properties are not unique to humans. The class Human
inherits the dependencies on air, water, and nourishment from the class Mammal,
of which it is a member.

I n this Session, we discuss inheritance. Inheritance is the capability of one

Sunday Morning

Advantages of Inheritance

The capability to pass down properties is a powerful one. It allows us to describe
things in an economical way. For example, when my son asks “What's a duck?” | can
say, “It's a bird that goes quack.” Despite what you might think, that answer conveys
a considerable amount of information to him. He knows what a bird is, and now he
knows all those same things about a duck plus the duck’s additional quacking ability.

There are several reasons why inheritance was introduced into C++. Of course, the
major reason is the capability to express the inheritance relationship. (I'll return to
that in a moment.) A minor reason is to reduce the amount of typing. Suppose we
have a class Student, and we are asked to add a new class called GraduateStudent.
Inheritance can drastically reduce the number of things we have to put in the class.
All we really need in the class GraduateStudent are things that describe the differ-
ences between students and graduate students.

A more important, related issue is that major buzzword of the ‘90s, reuse.
Software scientists have realized for some time that it doesn't make much sense to
start from scratch with each new project, rebuilding the same software components.

Compare the situation in software to other industries. How many car manufac-
turers start from ore to build a car? And even if they did, how many would start
completely over from ore with the next model? Practitioners in other industries
have found it makes more sense to start from screws, bolts, nuts, and even larger
off-the-shelf components such as motors and compressors.

Unfortunately, except for very small functions, like those found in the Standard
C library, it's rare to find much reuse of software components. One problem is that
it's virtually impossible to find a component from an earlier program that does
exactly what you want. Generally, these components require “tweaking.”

There’s a rule of thumb that says, “If you open it, you've broken it.” In other
words, if you have to modify a function or class to adapt it to a new application,
you will have to retest everything, not just the parts you add. Changes can intro-
duce bugs anywhere in existing code. (“The one who last touched it is the one
who gets to fix it.”)

Inheritance allows existing classes to be adapted to new applications without
the need for modification. The existing class is inherited into a new subclass that
contains any necessary additions and modifications.

This carries with it a third benefit. Suppose we inherit from some existing class.
Later we find that the base class has a bug that must be corrected. If we have mod-
ified the class to reuse it, we must manually check for, correct, and retest the bug
in each application separately. If we have inherited the class without changes, we
can probably adopt the fixed base class without further ado.

20 Min.
To Go

Session 21—Inheritance 303

Class Factoring

To make sense out of our surroundings, humans build extensive taxonomies. Fido
is a special case of dog which is a special case of canine which is a special case of
mammal and so it goes. This shapes our understanding of the world.

To use another example, a student is a (special type of) person. Having said
this, | already know a lot of things about students. | know they have social security
numbers, they watch too much TV, they drive a car too fast, and they don't exercise
enough. | know all these things because these are properties of all people.

In C++, we call this inheritance. We say that the class Student inherits from the
class Person. We say also that Person is a base class of Student and Student is a
subclass of Person. Finally, we say that a Student IS_A Person (I use all caps as
my way of expressing this unique relationship). C++ shares this terminology with
other object-oriented languages.

Notice that although Student IS_A Person, the reverse is not true. A Person is
not a Student. (A statement like this always refers to the general case. It could be
that a particular Person is, in fact, a Student.) A lot of people who are members of
class Person are not members of class Student. This is because the class Student
has properties it does not share with class Person. For example, Student has a
grade point average, but Person does not.

The inheritance property is transitive however. For example, if | define a new
class GraduateStudent as a subclass of Student, GraduateStudent must also be
Person. It has to be that way: if a GraduateStudent IS_A Student and a Student
IS_A Person, then a GraduateStudent IS_A Person

Implementing Inheritance in C++

To demonstrate how to express inheritance in C++, let’s return to the
GraduateStudent example and fill it out with a few example members:

// GSInherit - demonstrate how the graduate
// student class can inherit

// the properties of a Student
#include <stdio.h>

#include <iostream.h>

f#Hinclude <string.h>

// Advisor - let’s provide an empty class
// for now

TZ UoIsSsas
Buiuiop Aepung—A 1ued

304 Sunday Morning

class Advisor
{
b

// Student - this class includes all types of
// students
class Student
{
public:
Student ()
{
// start out a clean slate
pszName = 0;
dGPA = nSemesterHours = 0;
}
~Student ()
{
// if there is a name...
if (pszName != 0)
{
// ...then return the buffer
delete pszName;
pszName = 0;

// addCourse - add in the effects of completing
// a course by factoring the
// dGrade into the GPA
void addCourse(int nHours, double dGrade)
{
// first find the current weighted GPA
int ndGradeHours = (int)(nSemesterHours * dGPA + dGrade);

// now factor in the number of hours
// just completed
nSemesterHours += nHours;

// from that calculate the new GPA
dGPA = ndGradeHours / nSemesterHours;

Session 21—Inheritance 305

// the following access functions allow
// the application access to important
// properties
int hours()
{
return nSemesterHours;
}
double gpa()
{
return dGPA;

protected:
char* pszName;
int nSemesterHours;

double dGPA;

// copy constructor - I don’t want any

!/ copies being created
Student(Student& s)

{

}

b

// GraduateStudent - this class is limited to
// students who already have a
// BA or BS
class GraduateStudent : public Student
{
public:
GraduateStudent()
{

o
5}
=
=
T
& o
n C
0 S
o
)
ii~<
=
HO
=
=
=;
Q

dQualifierGrade = 2.0;

double qualifier()
{

return dQualifierGrade;

306 Sunday Morning

protected:
// all graduate students have an advisor
Advisor advisor;

// the qualifier grade is the

// grade below which the gradstudent
// fails the course

double dQualifierGrade;

int main(int nArgc, char* pszArgs[])

// first create a student
Student 1lu;

// now let’s create a graduate student
GraduateStudent gs;

// the following is perfectly OK
1Tu.addCourse(3, 2.5);
gs.addCourse(3, 3.0);

// the following is not

gs.qualifier(); // this is Tegal
1Tu.qualifier(); // but this isn’t
return 0;

}

The class Student has been declared in the conventional fashion. The declara-
tion for GraduateStudent, however, is different from previous declarations. The
name of the class followed by the colon followed by public Student declares class
GraduateStudent to be a subclass of Student.

The appearance of the keyword pub1ic implies that there is
probably protected inheritance as well. It’s true, but | want to
hold off discussing this type of inheritance for a moment.

Note

The function main() declares two objects, 11u and gs. The object 11u is a
conventional Student object, but the object gs is something new. As a member
of a subclass of Student, gs can do anything that 11u can do. It has the data

Session 21—Inheritance 307

members pszName, dSemesterHours, and dAverage and the member function
addCourse(). After all, gs quite literally IS_A Student —it's just a little bit
more than a Student. (You'll get tired of me reciting this “IS_A" stuff before
the book is over.) In fact, GraduateStudent has the qualifier() property
which Student does not have.

The next two lines add a course to the two students 11u and gs. Remember that
gs is also a Student.

The last two lines in main() are incorrect. It is OK to retrieve the qualifier
grade of the graduate student gs. It is not OK, however, to try to retrieve the
qualifier property of the 11u object. The 11u object is only a Student and
does not share the properties unique to GraduateStudent.

Now consider the following scenario:

// fn - performs some operation on a Student
void fn(Student &s)
{

//whatever fn it wants to do

int main(int nArgc, char* pszArgs[])
{
// create a graduate student...
GraduateStudent gs;

// ...now pass it off as a simple student
fn(gs);
return 0;

}

Notice that the function fn() expects to receive as its argument an object of
class Student. The call from main() passes it an object of class GraduateStudent.
However, this is fine because once again (all together now) “a GraduateStudent
IS_A Student.”

Basically, the same condition arises when invoking a member function of Student
with a GraduateStudent object. For example:

int main(int nArgc, char* pszArgs[])

{
GraduateStudent gs;
gs.addCourse(3, 2.5); //calls Student::addCourse()
return 0;

TZ UoIsSsas
Buiuiop Aepung—A 1ued

Sunday Morning

Constructing a Subclass

Even though a subclass has access to the protected members of the base class
and could initialize them in its own constructor, we would like the base class to
construct itself. In fact, this is what happens. Before control passes beyond the
open brace of the constructor for GraduateStudent, control passes to the default
constructor of Student (because no other constructor was indicated). If Student
were based on another class, such as Person, the constructor for that class would
be invoked before the Student constructor got control. Like a skyscraper, the object
gets constructed starting at the basement class and working its way up the class
structure one story at a time.

Just as with member objects, we sometimes need to be able to pass arguments
to the base class constructor. We handle this in almost the same way as with
member objects, as the following example shows:

// Student - this class includes all types of
// students
class Student
{
public:
// constructor - use default argument to
// create a default constructor as well as
// the specified constructor type
Student(char* pszName = 0)
{
// start out a clean slate
this->pszName = 0;
dGPA = nSemesterHours = 0;

// if there is a name provided...
if (pszName != 0)
{
this->pszName =
new charl[strlen(pszName) + 11;
strcpy(this->pszName, pszName);

}
~Student ()
{

Session 21—Inheritance 309

// if there is a name...

if (pszName !=0)

{
// ...then return the buffer
delete pszName;
pszName = 0;

}
// ...remainder of class definition...

b

// GraduateStudent - this class is limited to

// students who already have a
// BA or BS

class GraduateStudent : public Student

{

public:

// constructor - create a Graduate Student
/1 with an advisor, a name and
/1 a qualifier grade
GraduateStudent(

Advisor &adv,

char* pszName = 0,

double dQualifierGrade = 0.0)

: Student(pName),

advisor(adv)

// executed only after the other constructors
// have executed
dQualifierGrade = 0;
}
protected:
// all graduate students have an advisor
Advisor advisor;

// the qualifier grade is the

// grade below which the gradstudent
// fails the course

double dQualifierGrade;

TZ U0ISSas
Bululopy Aepuns—A ded

10 Min.
To Go

310 Sunday Morning

void fn(Advisor &advisor)
continued
{
// sign up our new marriage counselor
GraduateStudent gs(“Marion Haste”,
advisor,
2.0);
//...whatever this function does...
}

Here a GraduateStudent object is created with an advisor, the name “Marion
Haste” and a qualifier grade of 2.0. The the constructor for GraduateStudent
invokes the Student constructor, passing it the student name. The base class is
constructed before any member objects; thus, the constructor for Student is called
before the constructor for Advisor. After the base class has been constructed, the
Advisor object advisor is constructed using the copy constructor. Only then does
the constructor for GraduateStudent get a shot at it.

The fact that the base class is constructed first has nothing
to do with the order of the constructor statements after the
colon. The base class would have been constructed before the
Note data member object even if the statement had been written
advisor(adv), Student(pszName). However, it is a good idea

to write these clauses in the order in which they are executed
just as not to confuse anyone.

Following our rule that destructors are invoked in the reverse order of the
constructors, the destructor for GraduateStudent is given control first. After
it's given its last full measure of devotion, control passes to the destructor for
Advisor and then to the destructor for Student. If Student were based on a
class Person, the destructor for Person would get control after Student.

The destructor for the base class Student is executed even

though there is no explicit ~GraduateStudent constructor.

Note

This is logical. The blob of memory which will eventually become a
GraduateStudent object is first converted to a Student object. Then it is
the job of the GraduateStudent constructor to complete its transformation
into a GraduateStudent. The destructor simply reverses the process.

Session 21—Inheritance 311

Note a few things in this example. First, default arguments
have been provided to the GraduateStudent constructor in

order to pass along this ability to the Student base class.
Second, arguments can only be defaulted from right to left.
The following would not have been legal:

GraduateStudent(char* pszName = 0, Advisor& adv)...

The non-defaulted arguments must come first.

Notice that the class GraduateStudent contains an Advisor object within the
class. It does not contain a pointer to an Advisor object. The latter would have
been written:

class GraduateStudent : public Student
{

public:
GraduateStudent(
Advisor& adv,
char* pszName = 0)
: Student(pName),

pAdvisor = new Advisor(adv);
}
protected:
Advisor* pAdvisor;
}s

Here the base class Student is constructed first (as always). The pointer is
initialized within the body of the GraduateStudent constructor.

The HAS_A Relationship

Notice that the class GraduateStudent includes the members of class Student
and Advisor, but in a different way. By defining a data member of class Advisor,
we know that a Student has all the data members of an Advisor within it, yet we
say that a GraduateStudent HAS_A Advisor. What's the difference between this
and inheritance?

Let's use a car as an example. We could logically define a car as being a subclass
of vehicle, and so it inherits the properties of other vehicles. At the same time, a
car has a motor. If you buy a car, you can logically assume that you are buying a
motor as well.

TZ UoIsSsas
Buiuiop Aepung—A 1ued

Done!

312 Sunday Morning

Now if some friends asked you to show up at a rally on Saturday with your vehicle
of choice and you came in your car, there would be no complaint because a car IS_A
vehicle. But if you appeared on foot carrying a motor, they would have reason to be
upset because a motor is not a vehicle. It is missing certain critical properties that
vehicles share. It's even missing properties that cars share.

From a programming standpoint, it's just as straightforward. Consider
the following:

class Vehicle
{
}s
class Motor
i
b
class Car : public Vehicle
{

public:

Motor motor;

b
void VehicleFn(Vehicle &v);
void motorFn(Motor &m);
int main(int nArgc, char* pszArgs[])
{

Car c;

VehicleFn(c); //this is allowed
motorFn(c); //this is not allowed
motorFn(c.motor);//this is, however
return 0;

}

The call VehicleFn(c) is allowed because c IS_A Vehicle. The call motorFn(c) is
not because c is not a Motor, even though it contains a Motor. If what was intended
was to pass the motor portion of ¢ to the function, this must be expressed explicitly,
as in the call motorFn(c.motor).

Of course, the call motorFn(c.motor) is only allowed if c.motor
is public.

Note

One further distinction: the class Car has access to the protected members of
Vehicle, but not to the protected members of Motor.

Session 21—Inheritance 313

REVIEW

Understanding inheritance is critical to understanding the whole point behind
object-oriented programming. It's also required in order to understand the next
chapter. If you feel you've got it down, move on to Chapter 19. If not, you may
want to reread this chapter.

QuIZ YOURSELF

1. What is the relationship between a graduate student and a student? Is it
an IS_A or a HAS_A relationship? (See “The HAS_A Relationship.”)

2. Name three benefits from including inheritance to the C++ language?
(See “Advantages of Inheritance.”)

3. Which of the following terms does not fit: inherits, subclass, data member
and 1S_A? (See “Class Factoring.”)

TZ UoIsSsas
Buiuiop Aepung—A 1ued

