
Session Checklist

✔ Overriding member functions in a subclass
✔ Applying polymorphism (alias late binding)
✔ Comparing polymorphism to early binding
✔ Taking special considerations with polymorphism

Inheritance gives us the capability to describe one class in terms of another.
Just as importantly, it highlights the relationship between classes. Once
again, a microwave oven is a type of oven. However, there’s still a piece of the

puzzle missing.
You have probably noticed this already, but a microwave oven and a conventional

oven look nothing alike. These two types of ovens don’t work exactly alike either.
Nevertheless, when I say “cook” I don’t want to worry about the details of how each
oven performs the operation. This session describes how C++ handles this problem.

S E S S I O N

Polymorphism

22

4689-9 ch22.f.qc 3/7/00 9:36 PM Page 315

Overriding Member Functions

It has always been possible to overload a member function in one class with a mem-
ber function in the same class as long as the arguments are different. It is also pos-
sible to overload a member in one class with a member function in another class
even if the arguments are the same.

Inheritance introduces another possibility: a member function in a subclass can
overload a member function in the base class.

Overloading a member function in a subclass is called overriding.
This relationship warrants a different name because of the possi-
bilities it introduces.

Consider, for example, the simple EarlyBinding program shown in Listing 22-1.

Listing 22-1
EarlyBinding Demonstration Program

// EarlyBinding - calls to overridden member functions
// are resolved based on the object type

#include <stdio.h>
#include <iostream.h>

class Student
{
public:
double calcTuition()
{

return 0;
}

};
class GraduateStudent : public Student
{
public:
double calcTuition()
{

Note

Sunday Morning316

4689-9 ch22.f.qc 3/7/00 9:36 PM Page 316

return 1;
}

};

int main(int nArgc, char* pszArgs[])
{

// the following expression calls
// Student::calcTuition();
Student s;
cout << “The value of s.calcTuition is “

<< s.calcTuition()
<< “\n”;

// this one calls GraduateStudent::calcTuition();
GraduateStudent gs;
cout << “The value of gs.calcTuition is “

<< gs.calcTuition()
<< “\n”;

return 0;
}

Output

The value of s.calcTuition is 0
The value of gs.calcTuition is 1

As with any case of overriding, when the programmer refers to calcTuition(), C++
has to decide which calcTuition() is intended. Normally, the class is sufficient to
resolve the call, and this example is no different. The call s.calcTuition() refers
to Student::calcTuition() because s is declared locally as a Student, whereas
gs.calcTuition() refers to GraduateStudent::calcTuition().

The output from the program EarlyBinding shows that calls to overridden
member functions are resolved according to the type of the object.

Resolving calls to overridden member functions based on the
type of the object is called compile-time binding. This is also
called early binding.

Note

Session 22—Polymorphism 317

Part V–Sunday M
orning

Session 22

4689-9 ch22.f.qc 3/7/00 9:36 PM Page 317

Enter Polymorphism

Overriding functions based on the class of the object is all very nice, but what if
the class of the object making the call can’t be determined unambiguously at com-
pile time? To demonstrate how this can occur, let’s change the preceding program
in a seemingly trivial way. The result is the program AmbiguousBinding shown in
Listing 22-2.

Listing 22-2
AmbiguousBinding Program

// AmbiguousBinding - the situation gets confusing
// when the compile-time type and
// run-time type don’t match
#include <stdio.h>
#include <iostream.h>

class Student
{
public:
double calcTuition()
{

return 0;
}

};
class GraduateStudent : public Student
{
public:
double calcTuition()
{

return 1;
}

};

double fn(Student& fs)
{

// to which calcTuition() does this call refer?
// which value is returned?
return fs.calcTuition();

Sunday Morning318

4689-9 ch22.f.qc 3/7/00 9:36 PM Page 318

}

int main(int nArgc, char* pszArgs[])
{

// the following expression calls
// Student::calcTuition();
Student s;
cout << “The value of s.calcTuition when “

<< “called through fn() is “
<< fn(s)
<< “\n”;

// this one calls GraduateStudent::calcTuition();
GraduateStudent gs;
cout << “The value of gs.calcTuition when “

<< “called through fn() is “
<< fn(gs)
<< “\n”;

return 0;
}

The only difference between Listing 22-2 and Listing 22-1 is that the calls to
calcTuition() are made through an intermediate function, fn(). The function
fn(Student& fs) is declared as receiving a Student, but depending on how
fn() is called, fs can be a Student or a GraduateStudent. (Remember? A
GraduateStudent IS_A Student.) But these two types of objects calculate
their tuition differently.

Neither main() nor fn() really care anything about how tuition is calculated.
We would like fs.calcTuition() to call Student::calcTuition() when
fs is a Student, but call GraduateStudent::calcTuition() when fs is a
GraduateStudent. But this decision can only be made at run time when the
actual type of the object passed is determinable.

In the case of the AmbiguousBinding program, we say that the compile-time
type of fs, which is always Student, differs from the run-time type, which may
be GraduateStudent or Student.

The capability to decide which of several overridden member
functions to call based on the run-time type is called polymor-
phism, or late binding. Polymorphism comes from poly (meaning
multiple) and morph (meaning form).Note

Session 22—Polymorphism 319

Part V–Sunday M
orning

Session 22

4689-9 ch22.f.qc 3/7/00 9:36 PM Page 319

Polymorphism and Object-Oriented Programming

Polymorphism is key to the power of object-oriented programming. It’s so impor-
tant that languages that don’t support polymorphism cannot advertise themselves
as object-oriented languages. Languages that support classes but not polymor-
phism are called object-based languages. Ada is an example of such a language.

Without polymorphism, inheritance has little meaning.
Remember how I made nachos in the oven? In this sense, I was acting as the

late binder. The recipe read: “Heat the nachos in the oven.” It didn’t read: “If the
type of oven is a microwave, do this; if the type of oven is conventional, do that;
if the type of oven is convection, do this other thing.” The recipe (the code) relied
on me (the late binder) to decide what the action (member function) heat means
when applied to the oven (the particular instance of class Oven) or any of its vari-
ations (subclasses), such as a microwave oven (Microwave). This is the way people
think, and designing a language along these lines enables the software model to
more accurately describe what people are thinking.

There also are the mundane issues of maintenance and reusability. Suppose that
I had written this great program that used the class Student. After months of
design, coding, and testing, I release this application.

Time passes and my boss asks me to add to this program the capability to han-
dle graduate students who are similar but not identical to normal students. Deep
within the program, someFunction() calls the calcTuition() member function
as follows:

void someFunction(Student &s)
{

//...whatever it might do...
s.calcTuition();
//...continues on...

}

If C++ did not support late binding, I would need to edit someFunction() to
something similar to the following to add class GraduateStudent:

#define STUDENT 1
#define GRADUATESTUDENT 2
void someFunction(Student &s)
{

//...whatever it might do...
//add some member type that indicates

Sunday Morning320

4689-9 ch22.f.qc 3/7/00 9:36 PM Page 320

//the actual type of the object
switch (s.type)
{

STUDENT:
s.Student::calcTuition();
break;

GRADUATESTUDENT:
s.GraduateStudent::calcTuition();
break;

}
//...continues on...

}

By using the full name of the function, the expression
s.GraduateStudent::calcTuition() forces the call to the
GraduateStudent version even though s is declared to be a
Student.

I would add the member type to the class, which I would then set to STUDENT
in the constructor for Student and to GRADUATESTUDENT in the constructor for
GraduateStudent. The value of type would refer to the run-time type of s. I
would then add the test in the preceding code snippet to call the proper member
function depending on the value of this member.

That doesn’t seem so bad, except for three things. First, this is only one func-
tion. Suppose calcTuition() is called from a lot of places and suppose that
calcTuition() is not the only difference between the two classes. The chances
are not good that I will find all the places that need to be changed.

Second, I must edit (read “break”) code that was debugged, checked in, and
working, introducing opportunities for error. Edits can be time-consuming and
boring, which increases the possibility of error. Any one of my edits may be wrong
or may not fit in with the existing code. Who knows?

Finally, after I’ve finished editing, redebugging, and retesting everything, I now
have two versions to track (unless I can drop support for the original version). This
means two sources to edit when bugs are found and some type of accounting sys-
tem to keep them straight.

What happens when my boss wants yet another class added? (My boss is like
that.) Not only do I get to repeat the process, but I’ll also have three copies to track.

With polymorphism, there’s a good chance that all I need to do is add the new
subclass and recompile. I may need to modify the base class itself, but at least it’s
all in one place. Modifications to the application should be minimal to none.

Note

Session 22—Polymorphism 321

Part V–Sunday M
orning

Session 22

4689-9 ch22.f.qc 3/7/00 9:36 PM Page 321

This is yet another reason to leave data members protected and access them
through public member functions. Data members cannot be polymorphically over-
ridden by a subclass, whereas a member function can.

How Does Polymorphism Work?

Given all that I’ve said so far, it may be surprising that the default for C++ is early
binding. The output from the AmbiguousBinding program is shown below.

The value of s.calcTuition when called through fn() is 0
The value of gs.calcTuition when called through fn() is 0

The reason is simple. Polymorphism adds a small amount of overhead both in
terms of data storage and code needed to perform the call. The founders of C++
were concerned that any additional overhead they introduced would be used as a
reason not to adopt C++ as the systems language of choice, so they made the more
efficient early binding the default.

To indicate polymorphism, the programmer must flag the member function
with the C++ keyword virtual, as shown in program LateBinding contained in
Listing 22-3.

Listing 22-3
LateBinding Program

// LateBinding - in late binding the decision as to
// which of two overridden functions
// to call is made at run-time
#include <stdio.h>
#include <iostream.h>

class Student
{
public:
virtual double calcTuition()
{

return 0;
}

};
class GraduateStudent : public Student
{

Sunday Morning322

4689-9 ch22.f.qc 3/7/00 9:36 PM Page 322

public:
virtual double calcTuition()
{

return 1;
}

};

double fn(Student& fs)
{

// because calcTuition() is declared virtual this
// call uses the run-time type of fs to resolve
// the call
return fs.calcTuition();

}

int main(int nArgc, char* pszArgs[])
{

// the following expression calls
// fn() with a Student object
Student s;
cout << “The value of s.calcTuition when\n”

<< “called virtually through fn() is “
<< fn(s)
<< “\n\n”;

// the following expression calls
// fn() with a GraduateStudent object
GraduateStudent gs;
cout << “The value of gs.calcTuition when\n”

<< “called virtually through fn() is “
<< fn(gs)
<< “\n\n”;

return 0;
}

The keyword virtual added to the declaration of calcTuition() is a virtual
member function. That is to say, calls to calcTuition() will be bound late if the
run-time type of the object being used cannot be determined.

Session 22—Polymorphism 323

Part V–Sunday M
orning

Session 22

4689-9 ch22.f.qc 3/7/00 9:36 PM Page 323

The LateBinding program contains the same call to fn() as shown in the
two earlier versions. In this version, however, the call to calcTuition() goes to
Student::calcTuition() when fs is a Student and to GraduateStudent::
calcTuition() when fs is a GraduateStudent.

The output from LateBinding is shown below. Declaring calcTuition() virtual
tells fn() to resolve calls based on the run-time type.

The value of s.calcTuition when
called virtually through fn() is 0

The value of gs.calcTuition when
called virtually through fn() is 1

When defining the virtual member function, the virtual tag goes only with the
declarations and not with the definition, as the following example illustrates:

class Student
{
public:
// declare function to be virtual here
virtual double calcTuition()
{

return 0;
}

};

// don’t include the ‘virtual’ in the definition
double Student::calcTuition()
{

return 0;
}

When Is a Virtual Function Not?

Just because you think a particular function call is bound late doesn’t mean it is.
C++ generates no indication at compile time of which calls it thinks are bound
early and late.

The most critical thing to watch for is that all the member functions in question
are declared identically, including the return type. If not declared with the same

Sunday Morning324

4689-9 ch22.f.qc 3/7/00 9:36 PM Page 324

arguments in the subclasses, the member functions are not overridden polymorphi-
cally, whether or not they are declared virtual. Consider the following code snippet:

#include <iostream.h>
class Base
{
public:
virtual void fn(int x)
{

cout << “In Base class, int x = “ << x << “\n”;
}

};
class SubClass : public Base
{
public:
virtual void fn(float x)
{

cout << “In SubClass, float x = “ << x << “\n”;
}

};

void test(Base &b)
{

int i = 1;
b.fn(i); //this call not bound late
float f = 2.0;
b.fn(f); //neither is this one

}

fn() in Base is declared as fn(int), whereas the SubClass version is declared
fn(float). Because the functions have different arguments, there is no polymor-
phism. The first call is to Base::fn(int)— not surprising considering that b is
of class Base and i is an int. However, the next call also goes to Base::fn(int)
after converting the float to an int. No error is generated because this program
is legal (other than a possible warning concerning the demotion of f. The output
from calling test() shows no sign of polymorphism:

Calling test(bc)
In Base class, int x = 1
In Base class, int x = 2
Calling test(sc)

Session 22—Polymorphism 325

Part V–Sunday M
orning

Session 22

4689-9 ch22.f.qc 3/7/00 9:36 PM Page 325

In Base class, int x = 1
In Base class, int x = 2

If the arguments don’t match exactly, there is no late binding — with one excep-
tion: If the member function in the base class returns a pointer or reference to a
base class object, an overridden member function in a subclass may return a
pointer or reference to an object of the subclass. In other words, the following is
allowed:

class Base
{
public:
Base* fn();

};

class Subclass : public Base
{
public:
Subclass* fn();

};

In practice, this is quite natural. If a function is dealing with Subclass objects, it
seems natural that it should continue to deal with Subclass objects.

Virtual Considerations

Specifying the class name in the call forces the call to bind early. For example, the
following call is to Base::fn() because that’s what the programmer indicated,
even if fn() is declared virtual:

void test(Base &b)
{

b.Base::fn(); //this call is not bound late
}

A virtual function cannot be inlined. To expand a function inline, the compiler
must know which function is intended at compile time. Thus, although the exam-
ple member functions so far were declared in the class, all were outline functions.

Constructors cannot be virtual because there is no (completed) object to use to
determine the type. At the time the constructor is called, the memory that the

Sunday Morning326

4689-9 ch22.f.qc 3/7/00 9:36 PM Page 326

object occupies is just an amorphous mass. It’s only after the constructor has fin-
ished that the object is a member of the class in good standing.

By comparison, the destructor normally should be declared virtual. If not, you
run the risk of improperly destructing the object, as in the following circumstance:

class Base
{
public:
~Base();

};
class SubClass : public Base
{
public:
~SubClass();

};
void finishWithObject(Base *pHeapObject)
{

//...work with object...
//now return it to the heap
delete pHeapObject; // this calls ~Base() no matter

} // what the run-time type
// of pHeapObject is

If the pointer passed to finishWithObject() really points to a SubClass, the
SubClass destructor is not invoked properly. Declaring the destructor virtual
solves the problem.

So, when would you not want to declare the destructor virtual? There’s only one
instance. Earlier I said that virtual functions introduce a “little” overhead. Let me
be more specific. When the programmer defines the first virtual function in a class,
C++ adds an additional, hidden pointer — not one pointer per virtual function, just
one pointer if the class has any virtual functions. A class that has no virtual func-
tions (and does not inherit any virtual functions from base classes) does not have
this pointer.

Now, one pointer doesn’t sound like much, and it isn’t unless the following two
conditions are true:

� The class doesn’t have many data members (so that one pointer represents
a lot compared to what’s there already).

� You intend to create a lot of objects of this class (otherwise, the overhead
doesn’t make any difference).

Session 22—Polymorphism 327

Part V–Sunday M
orning

Session 22

4689-9 ch22.f.qc 3/7/00 9:36 PM Page 327

If both these conditions are met and your class doesn’t already have any virtual
member functions, you might not want to declare the destructor virtual.

Normally, you should declare the destructor virtual. If you don’t declare the
destructor virtual, document it!

REVIEW

By itself, inheritance is a nice but limited capability. Combined with polymor-
phism, inheritance is a powerful programming aid.

� Member functions in a class may be overridden by member functions
defined in the base class. Calls to these functions are resolved at compile
time based on the declared (compile-time) class. This is called early bind-
ing.

� A member function may be declared virtual, in which case calls are
resolved based on the run-time class. This is called polymorphic or late
binding.

� Calls in which the run-time and compile-time classes are known to be iden-
tical are bound early, regardless of whether the member function is
declared virtual or not.

QUIZ YOURSELF

1. What is polymorphism? (See “Enter Polymorphism.”)

2. What’s another word for polymorphism? (See “Enter Polymorphism.”)

3. What’s the alternative and what is it called? (See “Overriding Member
Functions.”)

4. Name three reasons that C++ includes polymorphism? (See “Polymorphism
and Object-Oriented Programming.”)

5. What keyword is used to declare a member function polymorphic? (See
“How Does Polymorphism Work?”)

Sunday Morning328

4689-9 ch22.f.qc 3/7/00 9:36 PM Page 328

