
Session Checklist

✔ Separating programs into multiple modules
✔ Using the #include directive
✔ Adding files to a Project
✔ Other preprocessor commands

A ll of the programs to this point have been small enough to contain in a
single .cpp source file. This is fine for the examples contained in a book
such as C++ Weekend Crash Course, but this would be a severe limitation

in real-world application programming. This session examines how to divide a
program into parts through the clever use of project and include files.

Why Divide Programs?

The programmer can divide a single program into separate files sometimes known
as modules. These individual source files are compiled separately and then com-
bined during the build process to generate a single program.

S E S S I O N

Large Programs

25

4689-9 ch25.f.qc 3/7/00 9:36 PM Page 361

The process of combining separately compiled modules into a
single executable is called linking.

There are a number of reasons to divide programs into more manageable pieces.
First, dividing a program into modules results in a higher level of encapsulation.
Classes wall off their internal members in order to provide a certain degree of
safety. Programs can wall off functions to do the same thing.

Remember that encapsulation was one of the advantages of
object-oriented programming.

Second, it is easier to comprehend and, therefore, easier to write and debug a
program that consists of a number of well-thought-out modules than a single
source file full of all of the classes and functions that the program uses.

Next comes reuse. I used the reuse argument to help sell object-based program-
ming. It is extremely difficult to keep track of a single class reused among multiple
programs when a separate copy of the class is kept in each program. It is much
better if a single class module is automatically shared among programs.

Finally, there is the argument of time. It doesn’t take a compiler such as Visual
C++ or GNU C++ very long to build the examples contained in this book using a
high-speed computer like yours. Commercial programs sometimes consist of mil-
lions of source lines of code. Rebuilding a program of that size can take more than
24 hours. (Almost as long as it’s taking you to get through this book!) A program-
mer would not tolerate rebuilding a program like that for every single change.
However, the majority of the time is spent compiling the source file into object
files. The link process is much quicker.

Separating Class Definition from Application Program

This section begins with the EarlyBinding example from Session 22 and separates
the definition of the class Student from the remainder of the application. To avoid
confusion, let’s call the result SeparatedClass.

Dividing the program

We begin by deciding what the logical divisions of SeparatedClass should be.
Clearly the application functions fn() and main() can be separated from the class

Note

Note

Sunday Morning362

4689-9 ch25.f.qc 3/7/00 9:36 PM Page 362

definition. These functions are not reusable nor do they have anything to do with
the definitions of the class Student. Similarly, the Student class does not refer to
the fn() or main() functions at all.

I store the application portion of the program in a file called SeparatedClass.cpp.
So far the program appears as follows:

// SeparatedClass - demonstrate an application separated
// from the class definition
#include <stdio.h>
#include <iostream.h>

double fn(Student& fs)
{

// because calcTuition() is declared virtual this
// call uses the run-time type of fs to resolve
// the call
return fs.calcTuition();

}

int main(int nArgc, char* pszArgs[])
{

// the following expression calls
// fn() with a Student object
Student s;
cout << “The value of s.calcTuition when\n”

<< “called virtually through fn() is “
<< fn(s)
<< “\n\n”;

// the following expression calls
// fn() with a GraduateStudent object
GraduateStudent gs;
cout << “The value of gs.calcTuition when\n”

<< “called virtually through fn() is “
<< fn(gs)
<< “\n\n”;

return 0;
}

Session 25—Large Programs 363

Part V–Sunday M
orning

Session 25

4689-9 ch25.f.qc 3/7/00 9:36 PM Page 363

Unfortunately, this module does not compile successfully because nothing in
SeparatedClass.cpp defines the class Student. We could, of course, insert the defi-
nition of Student back into SeparatedClass.cpp, but doing so defeats our purpose;
it puts us back where we started.

The #include directive

What is needed is some method for including the declaration Student in
SeparatedClass.cpp programmatically. The #include directive does exactly that.
The #include directive includes the contents of the file named in the source code
exactly at the point of the #include directive. This is harder to explain than it is
to do in practice.

First, I create the file student.h, which contains the definition of the Student
and GraduateStudent classes:

// Student - define the properties of a Student
class Student
{
public:
virtual double calcTuition()
{

return 0;
}

protected:
int nID;

};
class GraduateStudent : public Student
{
public:
virtual double calcTuition()
{

return 1;
}

protected:
int nGradId;

};

Sunday Morning364

4689-9 ch25.f.qc 3/7/00 9:36 PM Page 364

The target file of the #include directive is known as an include
file. By convention include files carry the name of the base class
they contain with a lower case first letter and the extension .h.
You may also see C++ include files with extensions such as .hh,
.hpp, and .hxx. Theoretically, the C++ compiler doesn’t care.

The new version of the application source file SeparatedClass.cpp appears as
follows:

// SeparatedClass - demonstrates an application separated
// from the class definition
#include <stdio.h>
#include <iostream.h>

#include “student.h”

double fn(Student& fs)
{

// ...identical to earlier version from here down...

The #include directive was added.

The #include directive must start in column one. The “. . .”
portion must be on the same line as the #include.

If you were to physically include the contents of student.h in the file
SeparatedClass.cpp, you would end up with exactly the same LateBinding.cpp file
that we started with. This is exactly what happens during the build process — C++
adds student.h to SeparatedClass.cpp and compiles the result.

The #include directive does not have the same syntax as other
C++ commands. This is because it is not a C++ directive at all. A
preprocessor makes a first pass over your C++ program before the
C++ compiler executes. It is this preprocessor which interprets
the #include directive.

Dividing application code

The SeparatedClass program successfully divided the class definition from the
application code, but suppose that this was not enough — suppose that we wanted

Note

Tip

Note

Session 25—Large Programs 365

Part V–Sunday M
orning

Session 25

4689-9 ch25.f.qc 3/7/00 9:36 PM Page 365

to separate the function fn() from main(). I could, of course, use the same
approach of creating an include file fn.h to include from the main source file.

The include file solution does not address the problem of creating programs that
take forever to build. In addition, this solution introduces all sorts of problems
concerning which function can call which function based on the order of inclu-
sion. A better solution is to divide the sources into separate compilation units.

During the compilation phase of the build operation, C++ converts the .cpp
source code into the equivalent machine instructions. This machine code informa-
tion is saved in a file called the object file with either the extension .obj (Visual
C++) or .o (GNU C++). In a subsequent phase, known as the link phase, the object
file is combined with the C++ standard library code to create the executable .exe
program.

Let’s use this capability to our own advantage. We can separate the
SeparatedClass.cpp file into a SeparatedFn.cpp file and a SeparatedMain.cpp
file. We begin by creating the two files.

The SeparatedFn.cpp file appears as follows:

// SeparatedFn - demonstrates an application separated
// into two parts - the fn() part
#include <stdio.h>
#include <iostream.h>

#include “student.h”

double fn(Student& fs)
{

// because calcTuition() is declared virtual this
// call uses the run-time type of fs to resolve
// the call
return fs.calcTuition();

}

The remaining SeparatedMain() program might appear as:

// SeparatedMain - demonstrates an application separated
// into two parts - the main() part
#include <stdio.h>
#include <iostream.h>

#include “student.h”

Sunday Morning366

4689-9 ch25.f.qc 3/7/00 9:36 PM Page 366

int main(int nArgc, char* pszArgs[])
{

// the following expression calls
// fn() with a Student object
Student s;
cout << “The value of s.calcTuition when\n”

<< “called virtually through fn() is “
<< fn(s)
<< “\n\n”;

// the following expression calls
// fn() with a GraduateStudent object
GraduateStudent gs;
cout << “The value of gs.calcTuition when\n”

<< “called virtually through fn() is “
<< fn(gs)
<< “\n\n”;

return 0;
}

Both source files include the same .h files. This is because both files need
access to the definition of the Student class as well as to the C++ Standard Library
functions.

Project file

Full of expectation, I open the SeparatedMain.cpp file in the compiler and click
Build.

If you’re trying this at home, make sure that you have closed the
SeparatedClass project file.

The error message “undeclared identifier” appears. C++ does not know what a
fn() is when compiling SeparatedMain.cpp. That makes sense, because the defini-
tion of fn() is in a different file.

Clearly I need to add a prototype declaration for fn() to the SeparatedMain.cpp
source file:

double fn(Student& fs);

Tip

Session 25—Large Programs 367

Part V–Sunday M
orning

Session 25

4689-9 ch25.f.qc 3/7/00 9:36 PM Page 367

The resulting source file passes the compile step, but generates an error during
the link step that it could not find the function fn(Student) among the .o
object files.

I could (and probably should) add a prototype declaration for
main() to the SeparatedFn.cpp file; however, it isn’t necessary
because fn() does not call main().

What is needed is a way to tell C++ to bind the two source files into the same
program. Such a file is called the project file.

Creating a project file under Visual C++

There are several ways to create a project file. The techniques differ between the
two compilers. In Visual C++, execute these steps:

1. Make sure that you close any project files created during previous
attempts to create the program by clicking Close Workspace in the File
menu. (A workspace is Microsoft’s name for a collection of project files.)

2. Open the SeparatedMain.cpp source file. Click compile.

3. When Visual C++ asks you if would like to create a Project file, click
Yes. You now have a project file containing the single source file
SeparatedMain.cpp.

4. If not already open, open the Workspace window (click Workspace
under View).

5. Switch to File view. Right click on SeparatedMain files, as shown in
Figure 25-1. Select Add Files to Project. From the menu, open the
SeparatedFn.cpp source file. Both SeparatedMain.cpp and SeparatedFn.cpp
should now appear in the list of functions that make up the project.

6. Click Build to successfully build the program. (The first time that both
source files are compiled is when performing a Build All.)

I did not say that this was the most elegant way, just the
easiest.

Note

Note

Sunday Morning368

4689-9 ch25.f.qc 3/7/00 9:36 PM Page 368

Figure 25-1
Right click the Project in the Workspace Window to add files to the project.

The SeparatedMain project file on the accompanying CD-ROM
contains both source files already.

Creating a project file under GNU C++

Use these steps to create a project file under rhide, the GNU C++ environment.

1. Without any files open, click Open Project in the Project menu.

2. Type in the name SeparatedMainGNU.gpr (the name isn’t actually impor-
tant — you can choose any name you want). A project window with the
single entry, <empty>, opens along the bottom of the display.

3. Click Add Item under Project. Open the file SeparatedMain.cpp.

4. Repeat for SeparatedFn.cpp.

5. Select Make in the Compile menu to successfully create the program
SeparatedMainGNU.exe. (Make rebuilds only those files that have
changed; Build All rebuilds all source files whether changed or not.)

Figure 25-2 shows the contents of the Project Window alongside the Message
Window displayed during the make process.

Tip

Session 25—Large Programs 369

Part V–Sunday M
orning

Session 25

4689-9 ch25.f.qc 3/7/00 9:36 PM Page 369

Figure 25-2
The rhide environment displays the files compiled and the program linked
during the project build process.

Reexamining the standard program template

Now you can see why we have been including the directives #include <stdio.h>
and #include <iostream.h> in our programs. These include files contain the def-
initions for the functions and classes that we have been using, such as strcat()
and cin>.

The standard C++-defined .h files are included using the <> brackets, whereas
locally defined .h files are defined using the quote commands. The only difference
between the two is that C++ looks for files contained in quotes starting with the
current directory (the directory containing the project file), whereas C++ begins
the search for bracketed files in the C++ include file directories. Either way, the
programmer controls the directories searched via project file settings.

In fact, it is the very concept of separate compilation that makes the include
file critical. Both SeparatedFn and SeparatedMain knew of Student because stu-
dent.h was included. We could have typed in this definition in both source files,
but this would have been very dangerous. The same definition in two different
places enhances the possibility that the two could get out of synch — one could
get changed without the other.

Including the definition of Student in a single student.h file and including that
file in the two modules makes it impossible for the definitions to differ.

Sunday Morning370

4689-9 ch25.f.qc 3/7/00 9:36 PM Page 370

Handling outline member functions

The example Student and GraduateStudent classes defined their functions within
the class; however, the member functions should have been declared outside of the
class (only the Student class is shown — the GraduateStudent class is identical).

// Student - define the properties of a Student
class Student
{
public:
// declare the member function
virtual double calcTuition();

protected:
int nID;

};

// define the code separate from the class
double Student::calcTuition();
{

return 0;
}

A problem arises if the programmer tries to include both the class and the mem-
ber functions in the same .h file. The function Student::calcTuition() becomes
a part of both SeparatedMain.o and SeparatedFn.o. When these two files are
linked, the C++ linker complains that calcTuition() is defined twice.

When the member function is defined within the class, C++ takes
special pains to avoid defining the function twice. C++ can’t
avoid the problem when the member function is defined outside
of the class.

External member functions must be defined in their own .cpp source file as in
the following Student.cpp:

#include “student.h”
// define the code separate from the class
double Student::calcTuition();
{

return 0;
}

Note

Session 25—Large Programs 371

Part V–Sunday M
orning

Session 25

4689-9 ch25.f.qc 3/7/00 9:36 PM Page 371

REVIEW

This session demonstrated how the programmer can divide programs into multiple
source files. Smaller source files save build time because the programmer need only
compile those source modules that have actually changed.

� Separately compiled modules increase the encapsulation of packages of
similar functions. As you have already seen, separate, encapsulated pack-
ages are easier to write and debug. The standard C++ library is one such
encapsulated package.

� The build process actually consists of two phases. During the first, the
compile phase, the C++ source statements are converted into a machine
readable, but incomplete object files. During the final, link phase, these
object files are combined into a single executable.

� Declarations, including class declarations, must be compiled along with
each C++ source file that uses the function or class declared. The easiest
way to accomplish this is to place related declarations in a single .h file,
which is then included in source .cpp files using the #include directive.

� The project file lists the modules that make up a single program. The pro-
ject file also contains certain program-specific settings which affect the
way the C++ environment builds the program.

QUIZ YOURSELF

1. What is the act of converting a C++ source file into a machine-readable
object file called? (See “Why Divide Programs?”)

2. What is the act of combining these object files into a single executable
called? (See “Why Divide Programs?”)

3. What is the project file used for? (See “Project File.”)

4. What is the primary purpose of the #include directive? (See “The
#include Directive.”)

Sunday Morning372

4689-9 ch25.f.qc 3/7/00 9:36 PM Page 372

