
Session Checklist

✔ Introduction to the assignment operator
✔ Why and when the assignment operator is necessary
✔ Similarities between the assignment operator and the copy

constructor

Whether or not you start out overloading operators, you need to learn to
overload the assignment operator fairly early. The assignment operator
can be overloaded for any user-defined class. By following the pattern

provided in this session, you will be generating your own version of operator=()
in no time.

Why Is Overloading the Assignment Operator Critical?

C++ provides a default definition for operator=() for all user-defined classes. This
default definition performs a member-by-member copy, like the default copy con-
structor. In the following example, each member of source is copied over the cor-
responding member in destination.

S E S S I O N

The Assignment Operator

28

4689-9 ch28.f.qc 3/7/00 9:38 PM Page 409

void fn()
{

MyStruct source, destination;
destination = source;

}

However, this default definition is not correct for classes that allocate resources,
such as heap memory. The programmer must overload operator=() to handle the
transfer of resources.

Comparison with copy constructor

The assignment operator is much like the copy constructor. In use, the two look
almost identical:

void fn(MyClass &mc)
{

MyClass newMC(mc); // of course, this uses the
// copy constructor

MyClass newerMC = mc;// less obvious, this also invokes
// the copy constructor

MyClass newestMC; // this creates a default object
newestMC = mc; // and then overwrites it with

// the argument passed
}

The creation of newMC follows the standard pattern of creating a new object as a
mirror image of the original using the copy constructor MyClass(MyClass&). Not
so obvious is that C++ allows the second format in which newerMC is created using
the copy constructor.

However, newestMC is created using the default (void) constructor and then
overwritten by mc using the assignment operator. The difference is that when the
copy constructor was invoked on newerMC, the object newerMC did not already
exist. When the assignment operator was invoked on newestMC, it was already a
MyClass object in good standing.

The rule is this: The copy constructor is used when a new object
is being created. The assignment operator is used if the left-
hand object already exists.

Tip

Sunday Afternoon410

4689-9 ch28.f.qc 3/7/00 9:38 PM Page 410

Like the copy constructor, an assignment operator should be provided whenever
a shallow copy is not appropriate. (Session 20 has a full discussion of shallow ver-
sus deep constructors.) It suffices to say that a copy constructor and an assign-
ment operator should be used when the class allocates and saves resources within
the class so that you don’t end up with two objects pointing to the same resource.

How Do I Overload the Assignment Operator?

Overloading the assignment operator is similar to overloading any other operator.
For example, Listing 28-1 is the program DemoAssign, which includes both a copy
constructor and an assignment operator.

Remember that the assignment operator must be a member func-
tion of the class.

Listing 28-1
Overloading the Assignment Operator

// DemoAssign - demonstrate the assignment operator
#include <stdio.h>
#include <string.h>
#include <iostream.h>

// Name - a generic class used to demonstrate
// the assignment and copy constructor
// operators
class Name
{
public:
Name(char *pszN = 0)
{

copyName(pszN);
}
Name(Name& s)
{

copyName(s.pszName);

Continued

Note

Session 28—The Assignment Operator 411

Part VI–Sunday Afternoon
Session 28

4689-9 ch28.f.qc 3/7/00 9:38 PM Page 411

Listing 28-1 Continued

}
~Name()
{

deleteName();
}
//assignment operator
Name& operator=(Name& s)
{

//delete existing stuff...
deleteName();
//...before replacing with new stuff
copyName(s.pszName);
//return reference to existing object
return *this;

}

// display - output the current object
// the default output object
void display()
{

cout << pszName;
}

protected:
void copyName(char *pszN);
void deleteName();
char *pszName;

};

// copyName() - allocate heap memory to store name
void Name::copyName(char *pszName)
{

this->pszName = 0;
if (pszName)
{

this->pszName = new char[strlen(pszName) + 1];
strcpy(this->pszName, pszName);

}

Sunday Afternoon412

4689-9 ch28.f.qc 3/7/00 9:38 PM Page 412

}

// deleteName() - return heap memory
void Name::deleteName()
{

if (pszName)
{

delete pszName;
pszName = 0;

}
}

// displayNames - output function to reduce the
// number of lines in main()
void displayNames(Name& pszN1, char* pszMiddle,

Name& pszN2, char* pszEnd)
{

pszN1.display();
cout << pszMiddle;
pszN2.display();
cout << pszEnd;

}

int main(int nArg, char* pszArgs[])
{

// create two objects
Name n1(“Claudette”);
Name n2(“Greg”);
displayNames(n1, “ and “,

n2, “ are newly created objects\n”);

// now make a copy of an object
Name n3(n1);
displayNames(n3, “ is a copy of “,

n1, “\n”);

// make a copy of the object from the
// address

Continued

Session 28—The Assignment Operator 413

Part VI–Sunday Afternoon
Session 28

4689-9 ch28.f.qc 3/7/00 9:38 PM Page 413

Listing 28-1 Continued

Name* pN = &n2;
Name n4(*pN);
displayNames(n4, “ is a copy using the address of “,

n2, “\n”);

// overwrite n2 with n1
n2 = n1;
displayNames(n1, “ was assigned to “,

n2, “\n”);
return 0;

}

Output:

Claudette and Greg are newly created objects
Claudette is a copy of Claudette
Greg is a copy using the address of Greg
Claudette was assigned to Claudette

The class Name retains a person’s name in memory, which it allocates from the
heap in the constructor. The constructors and destructor for class Name are similar
to those presented in Sessions 19 and 20. The constructor Name(char*) copies the
name given it to the pszName data member. This constructor also serves as the
default constructor. The copy constructor Name(&Name) copies the name of the
object passed to the name stored in the current object by calling copyName().
The destructor returns the pszName character string to the heap by calling
deleteName().

The function main() demonstrates each of these member functions. The output
from DemoAssign is shown at the end of Listing 28-1 above.

Take an extra look at the assignment operator. The function operator=() looks
to all the world like a destructor immediately followed by a copy constructor. This
is typical. Consider the assignment in the example n2 = n1. The object n2 already
has a name associated with it (“Greg”). In the assignment, the memory that the
original name occupies must be returned to the heap by calling deleteName()
before new memory can be allocated into which to store the new name
(“Claudette”) by calling copyName().

The copy constructor did not need to call deleteName() because the object
didn’t already exist. Therefore, memory had not already been assigned to the
object when the constructor was invoked.

Sunday Afternoon414

4689-9 ch28.f.qc 3/7/00 9:38 PM Page 414

In general, an assignment operator has two parts. The first part resembles a
destructor in that it deletes the assets that the object already owns. The second
part resembles a copy constructor in that it allocates new assets.

Two more details about the assignment operator

There are two more details about the assignment operator of which you need to be
aware. First, the return type of operator=() is Name&. I didn’t go into detail at
the time, but the assignment operator is an operator like all others. Expressions
involving the assignment operator have both a value and a type, both of which are
taken from the final value of the left-hand argument. In the following example,
the value of operator=() is 2.0 and the type is double.

double d1, d2;
void fn(double);
d1 = 2.0;

This is what enables the programmer to write the following:

d2 = d1 = 2.0
fn(d2 = 3.0); // performs the assignment and passes the

// resulting value to fn()

The value of the assignment d1 = 2.0, 2.0, and type, double, are passed to the
next assignment operator. In the second example, the value of the assignment d2
= 3.0 is passed to the function fn().

I could have made void the return type of Name::operator=(). However, if I
did, the above example would no longer work:

void otherFn(Name&);
void fn()
{

Name n1, n2, n3;

// the following is only possible if the assignment
// operator returns a reference to the current object
n1 = n2 = n3;
otherFn(n1 = n2);

}

The results of the assignment n1 = n2 is void, the return type of operator=(),
which does not match the prototype of otherFn(). Declaring operator=() to

Session 28—The Assignment Operator 415

Part VI–Sunday Afternoon
Session 28

4689-9 ch28.f.qc 3/7/00 9:38 PM Page 415

return a reference to the “current” object and returning *this retains the seman-
tics of the assignment operator for intrinsic types.

The second detail is that operator=() was written as a member function.
Unlike other operators, the assignment operator cannot be overloaded with a non-
member function. The special assignment operators, such as += and *=, have no
special restrictions and can be nonmember functions.

An Escape Hatch

Providing your class with an assignment operator can add considerable flexibility
to the application code. However, if this is too much for you, or if you can’t make
copies of your object, overloading the assignment operator with a protected func-
tion will keep anyone from accidentally making an unauthorized shallow copy.
For example:

class Name
{
//...just like before...
protected:
//assignment operator
Name& operator=(Name& s)
{

return *this;
}

};

With this definition, assignments such as the following are precluded:

void fn(Name &n)
{

Name newN;
newN = n; //generates a compiler error -

//function has no access to op=()
}

This copy protection for classes saves you the trouble of overloading the assign-
ment operator but reduces the flexibility of your class.

Sunday Afternoon416

4689-9 ch28.f.qc 3/7/00 9:38 PM Page 416

If your class allocates resources such as memory off of the heap
you must either write a satisfactory assignment operator and
copy constructor or make both protected to preclude the default
provided by C++ from being used.

REVIEW

Assignment is the only operator that you must overload and then only under cer-
tain conditions. Fortunately, defining assignment for your class isn’t too difficult if
you follow the pattern laid out for you in this session.

� C++ provides a default assignment operator that performs member-by-
member copies. This version of assignment is fine for many class types;
however, classes that can be allocated resources must include a copy con-
structor and an overloaded assignment operator.

� The semantics of the assignment operator is generally similar to a destruc-
tor immediately followed by a copy constructor. The destructor removes
whatever resources might already be in the class, while the copy construc-
tor makes a deep copy of the resources assigned it.

� Declaring the assignment operator protected removes the danger but limits
the class by precluding assignment to your class.

QUIZ YOURSELF

1. When do you need to include an assignment operator in your class? (See
“Why is Overloading the Assignment Operator Critical?”)

2. The return type of the assignment operator should always match the class
type. Why? (See “Two More Details About the Assignment Operator.”)

3. How can you avoid the need to write an assignment operator? (See “An
Escape Hatch.”)

Tip

Session 28—The Assignment Operator 417

Part VI–Sunday Afternoon
Session 28

4689-9 ch28.f.qc 3/7/00 9:38 PM Page 417

4689-9 ch28.f.qc 3/7/00 9:38 PM Page 418

