
Session Checklist

✔ Rediscovering stream I/O as an overloaded operator
✔ Using stream file I/O
✔ Using stream buffer I/O
✔ Writing your own inserters and extractors
✔ Behind the scenes with manipulators

S o far, our programs have performed all input from the cin input object and
output through the cout output object. Perhaps you haven’t really thought
about it much, but this input/output technique is a subset of what is known

as stream I/O.
This session explains stream I/O in more detail. I must warn you that stream

I/O is too large a topic to be covered completely in a single session — entire books
are devoted to this one topic. I can get you started, though, so that you can per-
form the main operations.

S E S S I O N

Stream I/O

29

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 419

How Does Stream I/O Work?

Stream I/O is based on overloaded versions of operator>() and operator<<(). The
declaration of these overloaded operators is found in the include file iostream.h,
which we have included in our programs since Session 2. The code for these func-
tions is included in the standard library, which your C++ program links with.

The following shows just a few of the prototypes appearing in iostream.h:

//for input we have:
istream& operator>(istream& source, char *pDest);
istream& operator>(istream& source, int &dest);
istream& operator>(istream& source, char &dest);
//...and so forth...

//for output we have:
ostream& operator<<(ostream& dest, char *pSource);
ostream& operator<<(ostream& dest, int source);
ostream& operator<<(ostream& dest, char source);
//...and so it goes...

When overloaded to perform I/O, operator>() is called the extractor and
operator<<() is called the inserter.

Let’s look in detail at what happens when I write the following:

#include <iostream.h>
void fn()
{

cout << “My name is Randy\n”;
}

The cout is an object of class ostream (more on this later). Thus, C++ determines
that the best match is the operator<<(ostream&, char*) function. C++ generates
a call to this function, the so-called char* inserter, passing the function the
ostream object cout and the string “My name is Randy\n” as arguments. That is, it
makes the call operator<<(cout, “My name is Randy\n”). The char* inserter
function, which is part of the standard C++ library, performs the requested output.

The ostream and istream classes form the base of a set of classes that connect
the application code with the outside world including input from and output to
the file system. How did the compiler know that cout is of class ostream? This
and a few other global objects are also declared in iostream.h. A list is shown in

Sunday Afternoon420

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 420

Table 29-1. These objects are constructed automatically at program startup, before
main() gets control.

Table 29-1
Standard Stream I/O Objects

Object Class Purpose

cin istream Standard input

cout ostream Standard output

cerr ostream Standard error output

clog ostream Standard printer output

Subclasses of ostream and istream are used for input and output to files and
internal buffers.

The fstream Subclasses

The subclasses ofstream, ifstream, and fstream are defined in the include file
fstream.h to perform stream input and output to a disk file. These three classes
offer a large number of member functions. A complete list is provided with your
compiler documentation, but let me get you started.

Class ofstream, which is used to perform file output, has several constructors,
the most useful of which is the following:

ofstream::ofstream(char *pszFileName,
int mode = ios::out,
int prot = filebuff::openprot);

The first argument is a pointer to the name of the file to open. The second and third
arguments specify how the file will be opened. The legal values for mode are listed in
Table 29-2 and those for prot in Table 29-3. These values are bit fields that are ORed
together (the classes ios and filebuff are both parent classes of ostream).

The expression ios::out refers to a static data member of the
class ios.

Tip

Session 29—Stream I/O 421

Part VI–Sunday Afternoon
Session 29

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 421

Table 29-2
Constants Defined in ios to Control How Files Are Opened

Flag Meaning

ios::ate Append to the end of the file, if it exists

ios::in Open file for input (implied for istream)

ios::out Open file for output (implied for ostream)

ios::trunc Truncate file if it exists (default)

ios::nocreate If file doesn’t already exist, return error

ios::noreplace If file does exist, return error

ios::binary Open file in binary mode (alternative is text mode)

Table 29-3
Values for prot in the ofstream Constructor

Flag Meaning

filebuf::openprot Compatibility sharing mode

filebuf::sh_none Exclusive; no sharing

filebuf::sh_read Read sharing allowed

filebuf::sh_write Write sharing allowed

For example, the following program opens the file MYNAME and then writes
some important and absolutely true information to that file:

#include <fstream.h>
void fn()
{

//open the text file MYNAME for writing - truncate
//whatever’s there now
ofstream myn(“MYNAME”);
myn << “Randy Davis is suave and handsome\n”

<< “and definitely not balding prematurely\n”;
}

Sunday Afternoon422

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 422

The constructor ofstream::ofstream(char*) expects only a filename and pro-
vides defaults for the other file modes. If the file MYNAME already exists, it is
truncated; otherwise, MYNAME is created. In addition, the file is opened in com-
patibility sharing mode.

Referring to Table 29-2, if I wanted to open the file in binary mode and append
to the end of the file if the file already exists, I would create the ostream object
as follows. (In binary mode, newlines are not converted to carriage returns and line
feeds on output nor are carriage returns and line feeds converted back to newlines
on input.)

void fn()
{

//open the binary file BINFILE for writing; if it
//exists, append to end of whatever’s already there

ofstream bfile(“BINFILE”, ios::binary | ios::ate);
//...continue on as before...

}

The stream objects maintain state information about the I/O process. The mem-
ber function bad() returns an error flag which is maintained within the stream
classes. This flag is nonzero if the file object has an error.

Stream output predates the exception-based error-handling tech-
nique explained in Session 30.

To check whether the MYNAME and BINFILE files were opened properly in the
earlier examples, I would have coded the following:

#include <fstream.h>
void fn()
{

ofstream myn(“MYNAME”);
if (myn.bad()) //if the open didn’t work...
{

cerr << “Error opening file MYNAME\n”;
return; //...output error and quit

}

Note

Session 29—Stream I/O 423

Part VI–Sunday Afternoon
Session 29

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 423

myn << “Randy Davis is suave and handsome\n”
<< “and definitely not balding prematurely\n”;

}

All attempts to output to an ofstream object that has an error have no effect
until the error has been cleared by calling the member function clear().

This last paragraph is meant quite literally — no output is possi-
ble as long as the error flag is nonzero.

The destructor for class ofstream automatically closes the file. In the preceding
example, the file was closed when the function exited.

Class ifstream works much the same way for input, as the following example
demonstrates:

#include <fstream.h>
void fn()
{

//open file for reading; don’t create the file
//if it isn’t there

ifstream bankStatement(“STATEMNT”, ios::nocreate);
if (bankStatement.bad())
{

cerr << “Couldn’t find bank statement\n”;
return;

}
while (!bankStatement.eof())
{

bankStatement > nAccountNumber > amount;
//...process this withdrawal

}
}

The function opens the file STATEMNT by constructing the object bankStatement. If
the file does not exist, it is not created. (We assume that the file has information for
us, so it wouldn’t make much sense to create a new, empty file.) If the object is bad
(for example, if the object was not created), the function outputs an error message
and exits. Otherwise, the function loops, reading the nAccountNumber and with-
drawal amount until the file is empty (end-of-file is true).

Tip

Sunday Afternoon424

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 424

An attempt to read an ifstream object that has the error flag set, indicating a
previous error, returns immediately without reading anything.

Let me warn you one more time. Not only is nothing returned
from reading an input stream that has an error, but the buffer
comes back unchanged. This program can easily come to the false
conclusion that it has just read the same value as previously.
Further, eof() will never return a true on an input stream which
has an error.

The class fstream is like an ifstream and an ofstream combined (in fact, it
inherits from both). An object of class fstream can be created for input or output,
or both.

The strstream Subclasses

The classes istrstream, ostrstream, and strstream are defined in the include file
strstrea.h. (The file name appears truncated on the PC because MS-DOS allowed no
more than 8 characters for a file name; GNU C++ uses the full file name strstream.h.)
These classes enable the operations defined for files by the fstream classes to be
applied to buffers in memory.

For example, the following code snippet parses the data in a character string
using stream input:

#include <strstrea.h>
//Change to <strstream.h> for GNU C++
char* parseString(char *pszString)
{

//associate an istrstream object with the input
//character string
istrstream inp(pszString, 0);

//now input from that object
int nAccountNumber;
float dBalance;
inp > nAccountNumber > dBalance;

//allocate a buffer and associate an
//ostrstream object with it

Tip

Session 29—Stream I/O 425

Part VI–Sunday Afternoon
Session 29

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 425

char* pszBuffer = new char[128];
ostrstream out(pszBuffer, 128);

//output to that object
out << “account number = “ << nAccountNumber

<< “, dBalance = $” << dBalance
<< ends;

return pszBuffer;
}

This function appears to be much more complicated than it needs to be, however,
parseString() is easy to code but very robust. The parseString() function can
handle any type of messing input that the C++ extractor can handle and it has all
of the formatting capability of the C++ inserter. In addition, the function is actu-
ally simple once you understand what it’s doing.

For example, let’s assume that pszString pointed to the following string:

“1234 100.0”

The function parseString() associates the object inp is with the input string by
passing that value to the constructor for istrstream. The second argument to the
constructor is the length of the string. In this example, the argument is 0, which
means “read until you get to the terminating NULL.”

The extractor statement inp > first extracts the account number, 1234, into the
int variable nAccountNumber exactly as if it were reading from the keyboard or a
file. The second half extracts the value 100.0 into the variable dDBalance.

On the output side, the object out is associated with the 128 character buffer
pointed to by pszBuffer. Here again, the second argument to the constructor is the
length of the buffer—this value cannot be defaulted because ofstrstream has no
way of determining the size of the buffer (there is no terminating NULL at this
point). A third argument, which corresponds to the mode, defaults to ios::out. You
can set this argument to ios::ate, however, if you want the output to append to
the end of whatever is already in the buffer rather than overwrite it.

The function then outputs to the out object - this generates the formatted output
in the 128 character buffer. Finally, the parseString() function returns the buffer.
The locally defined inp and out objects are destructed when the function returns.

Sunday Afternoon426

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 426

The constant ends tacked on to the end of the inserter command
is necessary to add the null terminator to the end of the buffer
string.

The buffer returned in the preceding code snippet given the example input con-
tains the string.

“account number = 1234, dBalance = $100.00”

Comparison of string-handling techniques

The string stream classes represent an extremely powerful concept. This becomes
clear in even a simple example. Suppose I have a function whose purpose is to cre-
ate a descriptive string from a USDollar object.

My solution without using ostrstream appears in Listing 29-1.

Listing 29-1
Converting USDollar to a String for Output

// ToStringWOStream - convert USDollar to a string
// displaying the amount

#include <stdio.h>
#include <iostream.h>
#include <stdlib.h>
#include <string.h>

// USDollar - represent the greenback
class USDollar
{
public:
// construct a dollar object with an initial
// dollar and cent value
USDollar(int d = 0, int c = 0);

// rationalize - normalize the number of nCents by
// adding a dollar for every 100 nCents

void rationalize()

Continued

Note

Session 29—Stream I/O 427

Part VI–Sunday Afternoon
Session 29

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 427

Listing 29-1 Continued

{
nDollars += (nCents / 100);
nCents %= 100;

}

// output- return as description of the
// current object
char* output();

protected:
int nDollars;
int nCents;

};

USDollar::USDollar(int d, int c)
{

// store of the initial values locally
nDollars = d;
nCents = c;

rationalize();
}

// output- return as description of the
// current object
char* USDollar::output()
{

// allocate a buffer
char* pszBuffer = new char[128];

// convert the nDollar and nCents values
// into strings
char cDollarBuffer[128];
char cCentsBuffer[128];
ltoa((long)nDollars, cDollarBuffer, 10);
ltoa((long)nCents, cCentsBuffer, 10);

// make sure that the cents uses 2 digits

Sunday Afternoon428

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 428

if (strlen(cCentsBuffer) != 2)
{

char c = cCentsBuffer[0];
cCentsBuffer[0] = ‘0’;
cCentsBuffer[1] = c;

cCentsBuffer[2] = ‘\0’;
}

// now tack the strings together

strcpy(pszBuffer, “$”);
strcat(pszBuffer, cDollarBuffer);
strcat(pszBuffer, “.”);
strcat(pszBuffer, cCentsBuffer);

return pszBuffer;
}

int main(int nArgc, char* pszArgs[])
{

USDollar d1(1, 60);
char* pszD1 = d1.output();
cout << “Dollar d1 = “ << pszD1 << “\n”;
delete pszD1;

USDollar d2(1, 5);
char* pszD2 = d2.output();
cout << “Dollar d2 = “ << pszD2 << “\n”;
delete pszD2;

return 0;
}

Output

Dollar d1 = $1.60
Dollar d2 = $1.05

The ToStringWOStream program does not rely on stream routines to generate the
text version of a USDollar object. The function USDollar::output() makes
heavy use of the ltoa() function, which converts a long into a string, and of the

Session 29—Stream I/O 429

Part VI–Sunday Afternoon
Session 29

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 429

strcpy() and strcat() functions to perform the direct string manipulation. The
function must itself handle the case in which the number of cents is less than 10
and, therefore, occupies only a single digit. The output from this program is shown
at the end of the listing.

The following represents a version of USDollar::output() that does use the
ostrstream class.

This version is included in the ToStringWStreams program on the
accompanying CD-ROM.

char* USDollar::output()
{

// allocate a buffer
char* pszBuffer = new char[128];

// attach an ostream to the buffer
ostrstream out(pszBuffer, 128);

// convert into strings (setting the width
// insures that the number of cents digit is
// no less than 2
out << “$” << nDollars << “.”;
out.fill(‘0’);out.width(2);
out << nCents << ends;

return pszBuffer;
}

This version associates the output stream object out with a locally defined
buffer. It then writes the necessary values using the common stream inserter and
returns the buffer. Setting the width to 2 insures that the number of cents uses 2
digits when its value is less than 10. The output from this version is identical to
the output shown in Listing 29-1. The out object is destructed when control exits
the output() function.

I find the stream version of output()much easier to follow and less tedious
than the earlier nonstream version.

CD-ROM

Sunday Afternoon430

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 430

Manipulators

So far, we have seen how to use stream I/O to output numbers and character
strings using default formats. Usually the defaults are fine, but sometimes they
don’t cut it. True to form, C++ provides two ways to control the format of output.

First, invoking a series of member functions on the stream object can control
the format. You saw this in the earlier display() member function where
fill(‘0’) and width(2) set the minimum width and left fill character of
ostrstream.

The argument out represents an ostream object. Because
ostream is a base class for both ofstream and ostrstream, this
function works equally well for output to a file or to a buffer
maintained within the program!

A second approach is through manipulators. Manipulators are objects defined in
the include file iomanip.h to have the same effect as the member function calls.
The only advantage to manipulators is that the program can insert them directly in
the stream rather than having to resort to a separate function call.

The display() function rewritten to use manipulators appears as follows:

char* USDollar::output()
{

// allocate a buffer
char* pszBuffer = new char[128];

// attach an ostream to the buffer
ostrstream out(pszBuffer, 128);

// convert into strings; this version uses
// manipulators to set the fill and width
out << “$” << nDollars << “.”

<< setfill(‘0’) << setw(2)
<< nCents << ends;

return pszBuffer;
}

The most common manipulators and their corresponding meanings are listed in
Table 29-4.

Note

Session 29—Stream I/O 431

Part VI–Sunday Afternoon
Session 29

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 431

Table 29-4
Common Manipulators and Stream Format Control Functions

Manipulator Member function Description

dec flags(10) Set radix to 10

hex flags(16) Set radix to 16

Oct flags(8) Set radix to 8

setfill(c) fill(c) Set the fill character to c

setprecision(c) precision(c) Set display precision to c

setw(n) width(n) Set width of field to n characters *

Watch out for the width parameter (width() function and setw() manipula-
tor). Most parameters retain their value until they are specifically reset by a subse-
quent call, but the width parameter does not. The width parameter is reset to its
default value as soon as the next output is performed. For example, you might
expect the following to produce two eight-character integers:

#include <iostream.h>
#include <iomanip.h>
void fn()
{

cout << setw(8) //width is 8...
<< 10 //...for the 10, but...
<< 20 //...default for the 20
<< “\n”;

}

What you get, however, is an eight-character integer followed by a two-character
integer. To get two eight-character output fields, the following is necessary:

#include <iostream.h>
#include <iomanip.h>
void fn()
{

cout << setw(8) //set the width...
<< 10
<< setw(8) //...now reset it

<< 20

Sunday Afternoon432

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 432

<< “\n”;
}

Which way is better, manipulators or member function calls? Member functions
provide a bit more control because there are more of them. In addition, the mem-
ber functions always return the previous setting so you know how to restore it (if
you want). Finally, each function has a version without any arguments to return
the current value, should you want to restore the setting later.

Even with all these features, the manipulators are the more common, probably
because they look neat. Use whichever you prefer, but be prepared to see both in
other people’s code.

Custom Inserters

The fact that C++ overloads the left-shift operator to perform output is neat because
you are free to overload the same operator to perform output on classes you define.

Consider the USDollar class once again. The following version of the class
includes an inserter that generates the same output as the display() versions
prior:

// Inserter - provide an inserter for USDollar

#include <stdio.h>
#include <iostream.h>
#include <iomanip.h>

// USDollar - represent the greenback
class USDollar
{

friend ostream& operator<<(ostream& out, USDollar& d);
public:
// ...no change...

};

// inserter - output a string description
// (this version handles the case of cents
// less than 10)
ostream& operator<<(ostream& out, USDollar& d)
{

Session 29—Stream I/O 433

Part VI–Sunday Afternoon
Session 29

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 433

char old = out.fill();
out << “$”

<< d.nDollars
<< “.”
<< setfill(‘0’) << setw(2)
<< d.nCents;

// replace the old fill character
out.fill(old);

return out;
}

int main(int nArgc, char* pszArgs[])
{

USDollar d1(1, 60);
cout << “Dollar d1 = “ << d1 << “\n”;

USDollar d2(1, 5);
cout << “Dollar d2 = “ << d2 << “\n”;

return 0;
}

The inserter performs the same basic operations as the earlier display() func-
tions outputting this time directly to the ostream out object passed to it. However,
the main() function is even more straightforward than the earlier versions. This
time the USDollar object can be inserted directly into the output stream.

You may wonder why the operator<<() returns the ostream object passed to it.
This is what enables the insertion operations to be chained. Because operator<<()
binds from left to right, the following expression

USDollar d1(1, 60);
cout << “Dollar d1 = “ << d1 << “\n”;

is interpreted as

USDollar d1(1, 60);
((cout << “Dollar d1 = “) << d1) << “\n”;

The first insertion outputs the string “Dollar d1 = “ to cout. The result of this
expression is the object cout, which is then passed to operator<<(ostream&,

Sunday Afternoon434

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 434

USDollar&). It is important that this operator return its ostream object so that the
object can be passed to the next inserter, which outputs the newline character “\n”.

Smart Inserters

We often would like to make the inserter smart. That is, we would like to say cout
<< baseClassObject and let C++ choose the proper subclass inserter in the same
way that it chooses the proper virtual member function. Because the inserter is
not a member function, we cannot declare it virtual directly.

We can easily sidestep the problem by making the inserter depend on a virtual
display() member function as demonstrated by the VirtualInserter program in
Listing 29-2.

Listing 29-2
VirtualInserter Program

// VirtualInserter - base USDollar on the base class
// Currency. Make the inserter virtual
// by having it rely on a virtual
// display() routine

#include <stdio.h>
#include <iostream.h>
#include <iomanip.h>

// Currency - represent any currency
class Currency
{

friend ostream& operator<<(ostream& out, Currency& d);
public:
Currency(int p = 0, int s = 0)
{

nPrimary = p;
nSecondary = s;

}

// rationalize - normalize the number of nCents by
// adding a dollar for every 100 nCents

Continued

Session 29—Stream I/O 435

Part VI–Sunday Afternoon
Session 29

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 435

Listing 29-2 Continued

void rationalize()
{

nPrimary += (nSecondary / 100);
nSecondary %= 100;

}

// display - display the object to the
// given ostream object
virtual ostream& display(ostream&) = 0;

protected:
int nPrimary;
int nSecondary;

};

// inserter - output a string description
// (this version handles the case of cents
// less than 10)
ostream& operator<<(ostream& out, Currency& c)
{

return c.display(out);
}

// define dollar to be a subclass of currency
class USDollar : public Currency
{
public:
USDollar(int d, int c) : Currency(d, c)
{
}

// supply the display routine
virtual ostream& display(ostream& out)
{

char old = out.fill();
out << “$”

<< nPrimary
<< “.”

Sunday Afternoon436

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 436

<< setfill(‘0’) << setw(2)
<< nSecondary;

// replace the old fill character
out.fill(old);

return out;
}

};

void fn(Currency& c, char* pszDescriptor)
{

cout << pszDescriptor << c << “\n”;
}

int main(int nArgc, char* pszArgs[])
{

// invoke USDollar::display() directly
USDollar d1(1, 60);
cout << “Dollar d1 = “ << d1 << “\n”;

// invoke the same function virtually
// through the fn() function
USDollar d2(1, 5);
fn(d2, “Dollare d2 = “);

return 0;
}

The class Currency defines a nonmember, and therefore nonpolymorphic, inserter
function. However, rather than perform any real work, this inserter relies on a
virtual member function display() to perform all the real work. The subclass
USDollar need only provide the display() function to complete the task. This ver-
sion of the program produces the same output shown at the bottom of Listing 29-1.

That the insertion operation is, indeed, polymorphic is demonstrated by creat-
ing the output function fn(Currency&, char*). The fn() function does not
know what type of currency it is receiving and, yet, displays the currency passed it
using the rules for a USDollar. main() outputs d1 directly and d2 through this
added function fn(). The virtual output from fn() appears the same as its non-
polymorphic brethren.

Session 29—Stream I/O 437

Part VI–Sunday Afternoon
Session 29

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 437

Other subclasses of Currency, such as DMMark or FFranc, can be created even
though they have different display rules by simply providing the corresponding dis-
play() function. The base code could continue to use Currency with impunity.

But Why the Shift Operators?

You might ask, “Why use the shift operators for stream I/O? Why not use another
operator?”

The left-shift operator was chosen for several reasons. First, it’s a binary opera-
tor. This means the ostream object can be made the left-hand argument and the
output object the right-hand argument. Second, left shift is a very low priority
operator. Thus, expressions such as the following work as expected because addi-
tion is performed before insertion:

cout << “a + b” << a + b << “\n”;

Third, the left-shift operator binds from left to right. This is what enables us to
string output statements together. For example, the previous function is inter-
preted as follows:

#include <iostream.h>
void fn(int a, int b)
{

((cout << “a + b”) << a + b) << “\n”;
}

But having said all this, the real reason is probably just that it looks really neat.
The double less than, <<, looks like something moving out of the code, and the
double greater than, >, looks like something coming in. And, hey, why not?

REVIEW

I began this session warning you that stream I/O is too complex to cover in a single
chapter of any book, but this introduction should get you started. You can refer to
your compiler documentation for a complete listing of the various member func-
tions you can call. In addition, the relevant include files, such as iostream.h and
iomanip.h, contain prototypes with explanatory comments for all the functions.

Sunday Afternoon438

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 438

� Stream output is based on the classes istream and ostream.
� The include file iostream.h overloads the left-shift operator to perform out-

put to ostream and overloads the right-shift operator to perform input
from istream.

� The fstream subclass is used to perform file I/O.
� The strstream subclass performs I/O to internal memory buffers using the

same insertion and extraction operators.
� The programmer may overload the insertion and extraction operators for

the programmer’s own classes. These operators can be made polymorphic
through the use of intermediate functions.

� The manipulator objects defined in iomanip.h may be used to invoke
stream format functions.

QUIZ YOURSELF

1. What are the two operators << and > called when used for stream I/O?
(See “How Does String I/O Work?”)

2. What is the base class of the two default I/O objects cout and cin? (See
“How Does String I/O Work?”)

3. What is the class fstream used for? (See “The fstream Subclasses.”)

4. What is the class strstream used for? (See “The strstream Subclasses.”)

5. What manipulator sets numerical output into hexadecimal mode? What is
the corresponding member function? (See “Manipulators.”)

Session 29—Stream I/O 439

Part VI–Sunday Afternoon
Session 29

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 439

4689-9 ch29.f.qc 3/7/00 9:38 PM Page 440

