Table of Contents

1. PRODUCT OVERVIEW ...1
 1.1 INTENDED AUDIENCE ...1
 1.2 GENERAL DESCRIPTION ...1
 1.2.1 Features ..1
 1.2.2 Configuration ..1
 1.3 FACTORY TECHNICAL SUPPORT ..2
 1.4 PRODUCT WARRANTY ..2
 1.5 REPLACEMENT PARTS ...2
 1.5.1 Factory Repair ...2
 1.6 UNPACKING ...2
2. INSTALLATION ..3
 2.1 PLANNING THE INSTALLATION ...3
 2.1.1 Overview ..3
 2.1.2 Location ...3
 2.1.3 Cable Path ...3
 2.2 WARNINGS ...3
 2.2.1 RF Radiation warning ..3
 2.2.2 Interference with vehicular electronics ..3
 2.2.3 Secure mounting ...4
 2.2.4 Explosive environments ...4
 2.2.5 Installation in vehicles powered by liquefied gas ..4
 2.3 PHYSICAL UNIT ..4
 2.3.1 Recommended tools and supplies ...4
 2.3.2 Physical mounting of GeminiPD ...4
 2.4 ELECTRICAL INSTALLATION ..5
 2.4.1 Electrical requirements ..5
 2.4.2 Routing of power cable ..5
 2.5 ANTENNA ...7
 2.5.1 Recommended tools and supplies ...7
 2.5.2 Planning ...7
 2.5.3 Antenna Installation ...8
 2.6 COMPLETING THE PHYSICAL INSTALLATION ...8
 2.7 CHECKING OUT NORMAL OPERATION ...8
3. OPERATING DESCRIPTION ...9
 3.1 FRONT & REAR PANELS ...9
 3.2 DTE PORT INTERFACE ...10
 3.2.1 RS-232 Interface Signal Levels ...10
4. WINRIS PROGRAM ...11
 4.1 OPERATION ..11
 4.2 TO CONNECT AND START WINRIS ..11
 4.3 WINDOW ..12
 4.4 FUNCTIONS ...13
 4.4.1 “Station Reset” button ..13
 4.4.2 Configuration to a file ..13
 4.4.2.1 “Get” button ...13
 4.4.2.2 “Get As” button ...14
 4.4.3 Configuration from a File ...14
 4.4.3.1 “Put From” button ...14
 4.4.4 Special Functions ...14
 4.4.4.1 Banner Field ..14
What’s New in this version

History

Version 1.44 (Preliminary), November 2001
Following sections are amended to show 32 kbps bitrates with RC4FSK modulation in 25kHz channel spacing bit rates.
- Table 3 Carrier Modulation
- Table 5 Tests, Full & Half Channel Units
- Section 6 Specifications, emission designators

History

Version 1.43 (Preliminary), October 2001
Following sections are amended to show 32 kbps bitrates with RC4FSK modulation in 25kHz channel spacing bit rates.
- Section 1.2.1 Features
- Table 3 Carrier Modulation
- Table 5 Tests, Full & Half Channel Units
- Section 6 Specifications

Version 1.42 (Preliminary), April 2001
Following sections are amended to show SRRC4FSK 12.5kHz channel spacing bit rates.
- Section 1.2.1 Features
- Table 3 Carrier Modulation
- Table 5 Tests, Full & Half Channel Units
- Section 6 Specifications

Version 1.41, March 2001
- Section 2.5 “Antenna” and Figure 4 “Antenna spacing” amended to show FCC’s RF Exposure Guidelines for increased Duty Cycle.

Version 1.40, December 2000
- Supporting footnotes for Gemini/PD Lite model (No GPS option) added.
• Section 3.2, function of DE-9F pin 9 (Aux input) corrected and clarified.

• Section 4.0, re-written to support the WinRIS program.

• Section 5.0, Table 5, step 4, values revised.

• Section 6.0, MIL Specifications limitations note added.

• Appendix 1, clarification of “Officer Requires Assistance” alarm function added.

Version 1.32, October 2000

• Updated UHF units specifications:
 - Table 3 "Carrier Modulation"
 - Table 4 “Tests, Full & Half Channel Units”
 - Section 6 “Specifications”.

Version 1.31, August 2000

• Introduction of 25.6 Kbps model. Relevant changes made to:
 - Section 1.2.1 “Features”
 - Table 3 "Carrier Modulation"
 - Table 4 “Tests, Full & Half Channel Units”
 - Section 6 “Specifications”.
 - Emission designators table added to Section 6 “Specifications”.

Version 1.30, August 2000

• Power output specifications for 800MHz model added to section 1.2.1 “Features”.

• Main transceiver Output Power for 800MHz model added to:
 Table 4 “Tests, Full and Half Channel Units” and minimum value edited in the footnote.

• Title of section 4.4.4.2 edited to specify that RSSI Indicator also serves as power meter. Note added to establish that the internal wattmeter is not to be interpreted as a precision instrument.

• Section 4.4.4.3.1 “Unmodulated Carrier” edited to show 800MHz model power check nominal forward wattage.

• Section 2.4.2 “Routing of Power Cable”, step no. 7, clarification of negative wire connection.
Version 1.20, June 2000:

- LED indication explanation for the 800MHz (2% duty cycle limit) model added as a footnote to table 1 and to section 5.3 GPS Test.
- Section 2.5 “Antenna” rewritten and now including more details concerning “Planning” and has a new antenna spacing drawing.
- More details added to section 4.2 concerning starting of the WinRIS program from MS-Windows.
- Environmental MIL spec added
- FCC Certification number added to Specifications section.

Version 1.10, March 2000:

Addition of 800MHz specifications, revision to paragraph 2.2.1 – RF Radiation Warning and to paragraphs 2.5 through 2.5.3. – Antenna installation.

Version 1.0, January 2000:

First released version
Definitions

The following terms are used throughout this document.

<table>
<thead>
<tr>
<th>Item</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCE</td>
<td>Data Communications Equipment. This designation defines the direction (input or output) of the various RS-232 interface signals. Modems are always wired as DCE.</td>
</tr>
<tr>
<td>DTE</td>
<td>Data Terminal Equipment. This designation defines the direction (input or output) of the various RS-232 interface signals. Most user equipment, as well as PCs, are wired as DTE.</td>
</tr>
<tr>
<td>GCU</td>
<td>GeminiPD Control Unit board</td>
</tr>
<tr>
<td>GeminiPD</td>
<td>High specs mobile radiomodem. PD = Parallel decode</td>
</tr>
<tr>
<td>GeminiPD Lite</td>
<td>GeminiPD without GPS feature</td>
</tr>
<tr>
<td>HDX</td>
<td>Half Duplex. A unit that uses separate transmit and receive frequencies, but which may not transmit and receive simultaneously.</td>
</tr>
<tr>
<td>Simplex</td>
<td>A unit which uses the same frequency for transmit and receive.</td>
</tr>
<tr>
<td>WinRIS</td>
<td>Windows © Radio Installation Software. This software allows basic tests and unit configuration.</td>
</tr>
</tbody>
</table>
1. PRODUCT OVERVIEW

This document provides the information required for the installation, operation and verification of the DATARADIO GeminiPD mobile radiomodem.

1.1 Intended Audience

This document is designed for use by engineering design, installation, and maintenance personnel.

1.2 General Description

GeminiPD is a mobile radiomodem aimed at the public safety and public utility markets to meet demand for high speed and high throughput. It integrates all the necessary hardware for data-only vehicular installations up to but not including the laptop PC and its application software. Example of applications are:

1. Database inquiry systems.
 Small number of brief messages, (usually from the mobile station) with fairly long responses.

2. Computer-aided dispatch (CAD).
 Large number of messages, (usually from the base station) with very brief responses.

3. Automatic Vehicle Location (AVL).
 Using built-in GPS receiver, determines position, speed and direction of fleet members.

The GeminiPD is made-up of a main transceiver and an auxiliary receiver for Parallel Decode (PD), a 40-Watt power amplifier (35-Watt for 800 MHz model), a GeminiPD Control Unit (GCU) with DSP driven modem and an optional integrated OEM GPS receiver. *

1.2.1 Features

- One-piece integrated design in a rugged die-cast aluminum chassis.
- Parallel Decode (PD) technology (patent pending) featuring dual receivers for added decode sensitivity in multi-path and fading environments.
- Sophisticated DSP-based modem design provides added system performance, fewer retries and more effective throughput.
- Automatic channel changing for improved roaming capabilities.
- Built-in, up to 16-channel flash–EEPROM programmable synthesized radio transceiver with automatic channel selection.
- Models with on-air data speeds and modulation types as follows:
 - DGFSK* modulation, rates of 9600 to 19200 b/s in 12.5 or 25 kHz channel spacing (9600 b/s maximum in half channels).
 - or
 - xRC4FSK* modulation, rates of 32.0, 25.6 and 19.2 kb/s in 25 kHz or 16.0 and 14.4 Kb/s in 12.5 kHz channel spacing.
- 3 available user ports using standard RS-232 interface via built-in multiplexer.
- Half-duplex or simplex operation.
- Out-of-band signaling enables transmission of GPS* reports with no effect on system performance.
- Back-compatible with MobilPac/R (DGFSK)* at 9600 and 19200 b/s.

1.2.2 Configuration

GeminiPD is factory configured based on each customer network system requirements, usually by Dataradio System Engineering. Configuration is not changeable in the field without notifying Dataradio.

* Networks must use common modulation, bit and baud rates.
* The GeminiPD Lite model has no GPS.
1.3 Factory Technical Support
The Technical Support departments of DATARADIO provide customer assistance on technical problems and serve as an interface with factory repair facilities. They can be reached in the following ways:

DATARADIO Inc.
5500 Royalmount Ave, suite 200
Town of Mount Royal
Quebec, Canada H4P 1H7

Technical support hours: Monday to Friday
9:00 AM to 5:00 PM, Eastern Time
phone: +1 514 737-0020
fax: +1 514 737-7883
Email address: support@dataradio.com

or

DATARADIO Corp.
6160 Peachtree Dunwoody RD., suite C-200
Atlanta, Georgia 30328

Technical support hours: Monday to Friday
8:30 AM to 5:30 PM, Eastern Time
phone: 1 770 392-0002
fax: 1 770 392-9199

Email address: drctech@dataradio.com

1.4 Product Warranty
Warranty information may be obtained by contacting your sales representative.

1.5 Replacement Parts
This product is not field serviceable, except by the replacement of a complete unit. Specialized equipment and training is required to repair the GCU board and radio modules.

Contact Technical Support for service information before returning equipment. A Technical Support representative may suggest a solution eliminating the need to return equipment.

1.5.1 Factory Repair
When returning equipment for repair, you must request an RMA (Returned Material Authorization) number. The Tech Support representative will ask you several questions to clearly identify the problem. Please give the representative the name of a contact person who is familiar with the problem, should questions arise during servicing of the unit.

Customers are responsible for shipping charges for returned units. Units in warranty will be repaired free of charge unless there is evidence of abuse or damage beyond the terms of the warranty. Units out of warranty will be subject to service charges. Information about these charges is available from Technical Support.

1.6 Unpacking
When ready for installation, carefully unpack your GeminiPD kit (p/n 023 6000-001) shipping carton and identify each item as listed below:

- One GeminiPD
- Installation mounting bracket
- Power cable – 22 feet (6.7 meters)
- Small parts kit

If damage has occurred to the equipment during shipment, file a claim with the carrier immediately.
2. Installation

2.1 Planning the Installation

2.1.1 Overview

To ensure trouble-free, efficient installation, start by inspecting the vehicle to determine the optimum position for GeminiPD and its antennas as well as the routing of all associated cabling and wiring.

2.1.2 Location

Often, installations in cars are done in the trunk, underneath the back window ledge or on the trunk floor. In vans and small trucks, it is usually done in the back of the vehicle. In large vehicles, it is often done in the front cabin.

Be sure to place the GeminiPD unit in such a way that:

- The LEDs can be seen (as an aid in troubleshooting)
- Access to the antenna DE-9 connectors is possible without removing the unit
- Sufficient air may flow around the unit to provide adequate cooling

GeminiPD is not fully waterproof, therefore it should be mounted sufficiently away from an opened trunk lid or opened tailgate, windows or doors to avoid exposure to rain and/or snow. It also minimizes the chance that material can be accidentally thrown on the unit or of someone bumping against it.

2.1.3 Cable Path

Try to route the cables away from locations where they would be exposed to heat (exhaust pipes, mufflers, tailpipes, etc.), battery acid, sharp edges, mechanical damage or where they would be a nuisance to automobile mechanics, the driver or the passengers. Keep wiring away from automotive computer modules, other electronic modules and ignition circuits to help prevent interference between these components and radio equipment.

Try using existing holes in firewall and trunk wall and the channels above and below or beneath the doors, channels through doors and window columns that are convenient to run cables and wires. Whenever possible, install conduit in which to run the cables.

2.2 Warnings

Before starting installation, review all of the following warnings.

2.2.1 RF Radiation warning

The Federal Communications Commission (FCC), with its action in the General Docket, 79-144, March 13, 1985, has adopted a safety standard for the human exposure to radio frequency electromagnetic energy emitted by FCC-regulated equipment. Only proper installation of the transceiver antenna of GeminiPD as summarized in section 2.5 will result in user exposure substantially below the FCC recommended limits.

Qualified personnel must do all antenna installations. See paragraph 2.5.2 for recommended antenna positioning.

Transmissions when persons or animals outside the vehicle are within two feet of the antenna may result in radio energy radiation burns or related injuries.

2.2.2 Interference with vehicular electronics

Certain vehicle electronic devices may be prone to malfunction due to lack of protection from radio frequency energy present when transmitting.

It includes, and is not limited to:
- Electronic fuel injection systems
- Electronic anti-skid braking systems
- Electronic cruise control systems
If the installation vehicle contains such equipment, consult the dealer for the make of vehicle and enlist his aid in determining if such electronic circuits will perform normally when the radio is transmitting.

2.2.3 Secure mounting
For vehicle occupant(s) safety, mount GeminiPD securely so that the unit will not break loose in case of an accident or violent maneuvers.

2.2.4 Explosive environments
Operation of vehicular radio transmitters in explosive environments may be hazardous and conventional safety precautions must prevail. These include and are not limited to:
- Transmitting while fuelling the vehicle. Do not carry fuel containers in the same compartment as GeminiPD.
- Dynamite blasting caps may explode when transmitting radio operation takes place within 500 feet. Always obey the “Turn Off Two-Way Radios” signs posted at sites where dynamite is being used.

If transporting blasting caps:
1) Carry the blasting caps in an appropriate metal container having a soft cushioning lining.
2) Suppress transmissions whenever the blasting caps container is being loaded or unloaded into or from the vehicle.

Check applicable local bylaws.

2.2.5 Installation in vehicles powered by liquefied gas.
GeminiPD installations in vehicles powered by liquefied petroleum gas with the LP-gas container in the trunk or other sealed-off space within the interior of the vehicle must conform to the National Fire Protection Association Standard NFPA 58 which requires:
- Space containing radio equipment shall be isolated by a seal from the space containing the LP-gas container and its fittings.
- Outside filling connections shall be used for the LP-gas container.
The LP-gas container space shall be vented to the outside of the vehicle.

2.3 Physical Unit

2.3.1 Recommended tools and supplies
- Electric drill for mounting holes
- Hammer and center punch
- Tie-wraps
- Drills and circle cutters as needed according to the size of screws (or nuts and bolts) used.
- In-line “Power meter” capable of measuring forward and reflected power at the operating frequency of the radio.

2.3.2 Physical mounting of GeminiPD
Start by running all the cables (DC power, PC RS-232 as well as all antennas cabling) prior to mounting GeminiPD to assure the feasibility of the planned cable routing. Be sure to leave sufficient slack in each cable so the GeminiPD may be removed from the mounting bracket for servicing with the power applied and the antenna attached. GeminiPD is ready for installation.

Cautions:
- When drilling mounting holes, be careful to avoid damaging some vital part of the vehicle such as fuel tanks, transmission housing etc. Always check how far the mounting screws extend below the mounting surface prior to installation.
- Use of drill bit stops is highly recommended.
- After drilling, remove all metal shavings before installing screws.
• Do not overtighten self-tapping screws.

1. Once you have found a suitable mounting position for GeminiPD, hold the unit and the unattached mounting bracket in the proposed mounting position and check that there is clearance behind the unit for the heatsink, cables, etc. Check that the position provides a large enough flat surface that the bracket will not be distorted when installed.

![Figure 1 - Mounting plate and slot dimensions](image)

2. Using the installation bracket as a template, mark the four locations for drilling (see Figure 1). Again, ensure that drilling at the selected points is safe and will not cause damage.
3. Indent the drilling positions with a center punch.
4. Drill holes sized for the self-tapping screws or for the nuts, bolts and lock washers used.
 \textbf{Caution:} Slightly reduce the size of the drilled holes when using self-tapping screws in thin metal.

5. Install the bracket without distorting.
6. Securely mount GeminiPD to the installed bracket using the four supplied 8x40 black machine screws.
7. Drill any additional holes as required for routing all cables and fit holes with suitable grommets or bushings whenever required.

2.4 Electrical installation

2.4.1 Electrical requirements

GeminiPD is designed to operate from a 13.8Vdc nominal car battery (negative ground) and requires currents up to 15.0A. It will tolerate a supply voltage range of 10.9 volts to 16.3 volts.

In vehicles with a 24 VDC electrical system (mostly in trucks), it is essential to provide a suitably rated 24/12 VDC converter to isolate the unit from the battery and protect it against excessive voltage.

\textbf{Warnings:}

- Application of more than 16.3 VDC will damage GeminiPD and is not covered by the warranty.
- Always disconnect GeminiPD's DC power lead before connecting a second battery, using power from another vehicle or power boosting (e.g. when “jump starting” the vehicle).

2.4.2 Routing of power cable

1. Start by disconnecting the vehicle’s battery unless specifically prohibited from doing so by the customer, vehicle manufacturer, agent or supplier.
 \textbf{Note:}
 \textit{In this event, exercise extreme caution throughout the installation and fit the fuse only when the installation is complete.}

2. The 22 feet (6.7 meters) long power cable consists of three wires attached to a Packard Electric “Weather-Pack” connector (DC power Connector).
The DC Power connector has:

- At position “A”, the smaller red switch-sense wire (commonly to ignition)
- At position “B”, the blue ground wire
- At position “C”, a larger red B+ DC power wire (MUST be unswitched)

Figure 3 - DC Power Connector

3. Place this connector at GeminiPD’s radio power input location. Do not connect at this time. See paragraph 2.6, “Completing the physical installation”.

4. Carefully route both the B and the C wires to where the in-line fuse holder will be installed, usually as close to the vehicle’s battery as practicable. Ensure that leads do not chafe on any metal part(s). Secure the wires at several locations along their length.

Caution:

Use proper crimping tool.
Common pliers are NOT acceptable.

Warning:

The DC Power lead must be unswitched

5. Insert the negative (blue) lead into one of the appropriate connector lug and crimp solidly to force the metal contacts onto the wires.

6. Repeat the step above for connecting the red DC power lead.

7. Attach the positive lead at the battery positive terminal. Attach the negative wire at the vehicle end of the battery ground cable.

 If the negative cable is connected directly to the battery negative terminal, it should be fused in case of failure of the vehicle’s ground cable.

8. Ensure tight and secure connections.

9. Fasten the fuse holder and leads.

10. Carefully route the A wire to where the connection will be made for switch sensing.

 - Connect to “Ignition” if you wish to have GeminiPD turning ON and OFF dependent on the vehicle’s ignition key.
 - Connect to “Accessory” if you wish GeminiPD to be available when the engine is not running, but still dependent on the ignition key.
 - Connect to a user-supplied control switch.
 - In installations equipped with a “ChargeGuard”, connect to the controlled-side of the ChargeGuard (remembering that the DC Power lead must NOT be switched).

11. Make appropriate connections.

 Cautions:

 Where scraping to bare metal was required, and at the battery posts where wire ends and lugs may be exposed, apply anti-corrosion compound.
 Insert the fuse only when installation is complete and ready to test.

12. At the GeminiPD position, neatly coil cable slack and attach securely.
2.5 Antenna

To meet the FCC’s RF Exposure Guidelines, the main transmitter antenna must be vehicle-mounted to provide a separation distance of 50 cm or more from all persons and the antenna gain must not exceed 5dB to satisfy RF exposure requirements.

2.5.1 Recommended tools and supplies

- circle cutter
- hole saw or
- socket punch for antenna
- Mini-UHF Crimp tool

2.5.2 Planning

Referring to Figure 4, Gemini^{PD} commonly uses three separate antennas:

- “T” - Main transceiver -
 Constraints are Maximum Permissive Exposure (“MPE” on the drawing) limits of 50 cm (as per see section 2.5 above) and omni-directional factors
- “R” - Auxiliary receiver –
 Constraints are the receiver spacing of at least 5/8 λ (wavelength) from transceiver antenna and omni-directional requirements
- “G” - Global Positioning System (GPS)*
 Constraints are TX spacing of at least 24-in/60.96 cm from all transmitting antennas and a clear view of the sky.

For the optimum antenna spacing at the frequency you are using, consult System Engineering.

For installation of ground-plane dependent antennas, the center of the metal surface used for mounting is preferable for best omni-directional pattern.

For ground-plane independent antennas, installation may be close to the edges of the surface.

* The Gemini^{PD} Lite model has no GPS.

Figure 4 - Antenna spacing

Install the antennas in one of the following positions:
- Most preferred for all antennas: center-line of roof. For transmitter antenna, it is the ONLY acceptable position.
- Less preferred for receiver antenna: trunk lid, providing distance to transmitting antenna is respected whether lid is opened or closed.
- Much less preferred, but permissible for receiver antenna: left or right rear fenders, just in back of rear window
- Least preferred, but permissible for receiver antenna: left or right front fenders, ahead of windshield

Note: Proximity to other vehicle-mounted antennas may cause mutual interference especially at higher frequencies.
2.5.3 Antenna Installation

1. Route good quality 50-ohm coaxial cables (e.g. RG-223) from each of the selected antenna positions to the position where the GeminiPD unit is mounted.

2. Terminate the end at each of the antenna positions with the appropriate connector for the antenna used and make the connection.

3. At the GeminiPD position, cut the three cables to length and terminate with the appropriate plug. For the transceiver and the auxiliary cables, use a Mini-UHF crimp plug using an appropriate crimping tool. For the GPS, use a SMA connector.

4. **Positively identify** the transceiver mini-UHF plug and connect to the left rear of GeminiPD.

5. **Positively identify** the auxiliary receiver mini-UHF plug and connect to the front left of GeminiPD to the RX position.

6. Connect the SMA connector to the GPS* position below the auxiliary connector position.

7. **Do not skip this last step, trust us; it is an important one.** To complete the installation, tie-wrap together the auxiliary and the GPS* antenna cables at a point about two inches in front of the unit. It will be much easier hereafter to correctly identify which mini-UHF plug goes where. You DO NOT want to cross the auxiliary plug with the transceiver plug.

- Connect DC Power cable’s connector to GeminiPD’s until you hear a click as the two parts snap together.
- Re-check that all other connections are secure (antennas, PC, etc.)
- Switch vehicle ignition ON.

You are now ready to check for normal operation and to run the Radio Installation Software (WinRIS) program for testing or trouble-shooting.

2.6. Completing the physical Installation.

To complete the physical installation and prior to testing GeminiPD:

- Connect DC Power cable’s connector to GeminiPD’s until you hear a click as the two parts snap together.
- Re-check that all other connections are secure (antennas, PC, etc.)
- Switch vehicle ignition ON.

2.7. Checking out Normal operation

Check that the vehicle ignition is ON.

1. Check for proper operation of the GeminiPD’s LEDs as per Table 1 in section 3.1

2. Using the WinRIS program (described in section 4) and an in-line wattmeter, check forward & reverse power to confirm main antenna installation.

3. Using the WinRIS, check the RF link with a base station that can be heard by using the WinRIS “Ping” feature (see paragraph 4.4.4.4).

or

If user application and its base station are available, test the installation by going through a normal sequence of transmitting and receiving messages.

* The GeminiPD Lite model has no GPS.
3. Operating Description

3.1 Front & Rear Panels

The front panel includes:

- One mini-UHF type female antenna connector for the auxiliary receiver
- One SMA type female connector for the GPS receiver (not installed on GeminiPD Lite model)
- Two LED indicators
- Three DE-9F RS232 ports

The rear panel includes:

- One mini-UHF type female antenna connector for the main transceiver
- One 3-pin pigtailed DC Power connector with ignition sense

![Figure 5 - Front and rear panels](image-url)
Table 1 - Gemini^{PD} LEDs indications

<table>
<thead>
<tr>
<th>Power-on Sequence (LEDs are paired)</th>
<th>Normal Operation (LEDs are independent)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>PWR</td>
<td>PWR</td>
</tr>
<tr>
<td>RX / TX</td>
<td>Indication</td>
</tr>
<tr>
<td>Indication</td>
<td>RX / TX</td>
</tr>
<tr>
<td>Indication</td>
<td>Indication</td>
</tr>
<tr>
<td>Red</td>
<td>Green*</td>
</tr>
<tr>
<td>Red</td>
<td>Normal boot-up start (10 to 27 sec.)</td>
</tr>
<tr>
<td>Amber</td>
<td>Then 8 seconds to completing boot-up</td>
</tr>
<tr>
<td>Green</td>
<td>Normal state</td>
</tr>
<tr>
<td>Slow</td>
<td>Software failure (firmware erased)</td>
</tr>
<tr>
<td>Red/Green</td>
<td>Programming in progress</td>
</tr>
<tr>
<td>Fast</td>
<td></td>
</tr>
<tr>
<td>Red/Green</td>
<td></td>
</tr>
</tbody>
</table>

* For 800MHz model (using 25% duty cycle limit)

3.2 DTE Port Interface

For all three ports:

<table>
<thead>
<tr>
<th>DE-9 F pin #</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DCD – from Gemini<sup>PD</sup>, normally asserted</td>
</tr>
<tr>
<td>2</td>
<td>RXD – data from Gemini<sup>PD</sup></td>
</tr>
<tr>
<td>3</td>
<td>TXD – data to Gemini<sup>PD</sup></td>
</tr>
<tr>
<td>4</td>
<td>DTR – to Gemini<sup>PD</sup>, handshaking</td>
</tr>
<tr>
<td>5</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>DSR – from Gemini<sup>PD</sup>, tied to VCC through current limiting resistor</td>
</tr>
<tr>
<td>7</td>
<td>RTS - to Gemini<sup>PD</sup>, handshaking</td>
</tr>
<tr>
<td>8</td>
<td>CTS – from Gemini<sup>PD</sup>, handshaking</td>
</tr>
<tr>
<td>9</td>
<td>AUX - auxiliary input to GeminiPD, (for port 2: “Officer requires assistance” Alarm input)</td>
</tr>
</tbody>
</table>

It may be activated by (normally open) dry contact pull-up to the port’s DSR output. It may also tolerate user pull-up to external +12 VDC (car battery), but an isolated dry contact is preferred due to the risk of noise-related false alarms caused by the vehicle’s electrical system.

A +3 to +12 V signal at this pin will send a DMP “x” (On) message to the base.

An open or ground signal will send a DMP “y” (Off) message.

Messages are only sent when a signal transition occurs.

See Appendix “A” on page 24 for further details.

3.2.1 RS-232 Interface Signal Levels

In the descriptions of data signals, the following conventions are used:

<table>
<thead>
<tr>
<th>Term</th>
<th>Alternates</th>
<th>Signal level</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>asserted, spacing</td>
<td>+3 to +15 V</td>
</tr>
<tr>
<td>OFF</td>
<td>dropped, marking</td>
<td>-3 to -15 V</td>
</tr>
</tbody>
</table>
4. WinRIS program

The Windows Radio Installation Software (WinRIS) program is used to:

- Check and troubleshoot GeminiPD.
- Save an existing configuration.
- Upload files for field-configuring units (Requires intervention with technical support).

To run the program, you will need:

A PC or portable computer running a 32-bit MS-Windows application:

- Win ME
- Win2000
- Win NT
- Win 9x

Note:

WinRIS does not operate under:

- Win CE (embedded in PocketPC)
- 16-bit Windows 3.x

- A hard disk.
- An available COM port.
- A serial mouse, with its own driver installed is strongly recommend however most actions can also be done using keyboard command

4.2 To connect and start WinRIS

Connect a suitable 9-conductor straight RS-232 cable, between the unit’s front-mounted PC/Setup port and the RS-232 port of the PC or portable computer that will be running Gemini.exe program.

GeminiPD's WinRIS program is available on diskette, Dataradio p/n 980 03392-00n.

Refer to the WinRIS Readme.txt file for details on how to set MS-Windows environment, connect, install and run this program.

In summary, before starting the WinRIS when running MS-Windows, click on “Start”, then on "Run". Type the relevant path and variables on the command line (or select by browsing) leading to:

WinRIS.EXE COM[x], [speed],8,n,1

(where x is the PC COM port to be used) Of course, the executable command may be used alone without any variable added.

Click on “OK”.

It is also possible to create a PC desktop short-cut icon for WinRIS:

- Start by right clicking anywhere on the desktop,
- Select New,
- Select Shortcut and type the path as detailed above directly on the command line (with or without variables).
- Click Next,
- Type in an applicable name for the shortcut icon,
- Click Next
- Select an icon (your choice) and
- Click on Finish.

Command line settings override the environment variable, if any.
4.3 Window

This program uses one main display screen only. Placing the cursor over a Toolbar or Button generates a ScreenTip. Referring to Figure 6, starting from top and moving down to the bottom, the screen display is made up of:

- A **Menu bar**, containing the menu names listed below. They give access to command options. Unavailable commands are shown in light gray color. **Shortcut keys** are listed whenever available.
 - **File** menu lists the:
 - **Put From** command (Ctrl+O)
 - **Get** command (Ctrl+S)
 - **Get As** command
 and below a command separator, the:
 - **Exit** command
 - **Test** menu lists the:
 - **Modulated** command
 - **UnModulated** command
 - **View** menu lists the:
 - **Toolbar** checked command
 - **Status bar** checked command
 - **Help** menu lists the:
 - **Help Topics** command
 and below a command separator, the:
 - **About WinRIS** command

- A **Toolbar** row, located immediately below the menu bar containing buttons (each bearing an icon) for commonly used tasks as follows:
 - **Put From** button
 - **Get** button
 - **Get As** button

![Figure 6 - WinRIS window](image)
and to the right of a bar separator, the:

- **About** button and the
- Context-sensitive **Help** button

- An **Indicator and Button bar**, located immediately below the Toolbar row, it contains two circular indicators
 - **DSR signal is High** indicator
 - **CTS signal is High** indicator

and three buttons for commonly used tasks as follows.

- **Station Reset** button
- **Modulated TXON** button
- **Unmodulated TXON** button

- A **Product field**, displays product type being used after a connection to the product has been established

- A **Data section**, containing the Banner plus the Comments and Password fields and their related Put buttons.

- A **Channel(s) section**, to select and activate a channel.

- A **Test section**, with a **Ping** button and the relevant address field.

- A **Status bar**, for displaying standard user-messages. Other messages appear in dialog window boxes or warning windows.

4.4 Functions

The **WinRIS** program is used to:

- Save an existing configuration from a unit to a file.
- Take a configuration from a file and upload it to a unit
- Check **Gemini**
- Test and/or trouble-shoot installations

4.4.1 “Station Reset” button

The **Station Reset** button is the only button available when first starting the program and is used to initiate the connection process.

- Press **Station Reset**.
- Enter **Port** and **Baud rate** information in the **Select Port** sub-window.

- Press **OK** to validate the selection (or Cancel to exit back to the main screen).
- All test buttons and fields are now activated.

The **Station Reset** button is also pressed as a last step after doing a “Put From”. The **Station Reset** button causes downloaded parameters from a file or diskette to take effect in the connected unit.

Pressing **Station Reset** is not required after doing any Comments or Password configuration change as these have their own Put Comments and Put Password buttons.

Station Reset does not break the connection.

4.4.2 Configuration to a file

Saving the unit’s configuration to a file allows the user to:

- Subsequently restore the configuration.
- Safeguard a copy as documentation of the configuration.

Note: The configuration and status files are ASCII files and may be e-mailed or faxed to technical support when requested to do so.

Warning:

Do not make any changes to these files. Any changes made to the configurations MUST be done at factory or by Dataradio system engineering.

4.4.2.1 “Get” button

On the menu bar, select “File”, then the “Get” command or press the “Get” button on the Toolbar to:

- Establish linking
• Download and automatically save the connected unit’s configuration setting to a file named with the unit’s serial number: The WinRIS status bar will then report “All parameters are successfully retrieved and saved in file [unit’s n].GM2. Any previous configuration in the program is overwritten.

If you do not wish to overwrite an existing configuration or prefer to name the file yourself, use the “Get As” button.

4.4.2.2 “Get As” button
On the menu bar, select “File”, then the “Get As” command or press the “Get As” button on the Toolbar to:
• Establish linking
• Open the “File, Save As” window with the ASCII file *.gm2 (already selected).
• Save the connected unit’s operating characteristics (configuration setting) to a file, directory or drive of your choice.
 The program will ask before overwriting an existing file.
• Status bar reports “All parameters are successfully retrieved and saved in [filename].”

4.4.3 Configuration from a File
Loading a configuration from a file to a unit is useful to:
• Restore the operating characteristics of a unit (Requires intervention with technical support.)
• Carry out field updates using Dataradio system engineering supplied diskette(s).

Warning:
Do not make any changes to these files. Any changes made to the configurations MUST be done at factory or by Dataradio system engineering.

4.4.3.1 “Put From” button
1- On the menu bar, select “File”, then the “Put From” command or press the “Put From” button on the Toolbar.
2- In the “Open” window, locate the drive, directory and file name of the relevant file.
• This may be a configuration saved earlier from a unit.
• It can also be from a Dataradio (factory or system engineering) diskette.
3- Select the appropriate file
4- Press the “OK” button.
The status bar reports: “[filename] is downloading into unit” and up to 30 seconds later displays: “All parameters are saved. Apply Station Reset to take effect!”.
5- Press the “Station Reset” button. See section 4.4.1 for details.

4.4.4 Special Functions
The following WinRIS fields and buttons are used to gather specific information concerning the connected unit:
• Banner field
• Comments field and Put Comments button
• Password and Put Password button

4.4.4.1 Banner Field
This field displays a string made up of the serial number of the connected unit followed by the firmwares used and their version number.

Format is:
[serial number]:firmware 1 name, its version #, firmware 2 name, its version #.

The serial number portion uniquely identifies the unit. It is a variable length, maximum eight-character alphabetic string assigned at the time of manufacture. It is identical to the serial number printed on the label of the unit. This number cannot be changed and is used as part of the on-air protocol.
GeminiPD’s firmwares resides in flash EPROM and are designed to allow field upgrades.

When contacting your supplier, give the full banner string and the version of the WinRIS used. You will find the version number by selecting the “Help” menu option, then “About WinRIS” command or pressing the “About” button on the Toolbar.

The “Banner” field is blank prior to doing a "Get", "Get As" or "Put From".

4.4.4.2 Comments

1- Type comments directly in the “Comments” field. These can be text up to 24 characters. Use this field to enter user-convenient description(s) (customer name, location, etc...).

2- Press the button “Put Comments” to make the entry permanent. This field may be left blank.

On subsequent "Get", “Get As” or “Put From”, this field displays entered comments. If no comment was entered, the field will remain blank.

4.4.4.3 Password

The password feature is useful where two (or more) fleets share the same radio channel. Mobiles without the proper password would still receive the message but the contents would not be intelligible.

1- Type your password directly in the “Password” field. It is a string of 32 hexadecimal characters (exactly).

2- Press the button “Put Password” to make the entry permanent. This field may be left blank.

On subsequent “Get”, “Get As” or “Put From”, this field will require that the correct password be entered. If none was entered, the field will remain blank.

Password information is NOT retrieved and saved to a file, along with the configuration.

Clearing a Password is done by entering 32 zeros.

The Dataradio supplied password algorithm is designed to thwart the casual observer only. It provides a limited form of data privacy. Therefore, if your security requirements are high, Dataradio urges you to use external encryption technology (such as Data Encryption Standard (DES)) in the Host and Mobiles computers.

4.4.5 Test Functions

The following WinRIS functions and buttons are used to carry out testing or trouble-shooting on a connected unit:

- DSR signal is High indicator
- CTS signal is High indicator
- Channels select
- Show All Channel Frequencies
- RSSI Indicator
- TXON (Modulated)
- TXON (Unmodulated)
- Ping Address and Ping button

4.4.5.1 DSR signal is High indicator

The “Data Set Ready” (DSR) indicator light, located on the button bar (leftmost), is an RS-232 protocol port indication. When lit, it indicates proper connection and that the value is High. The DMP protocol used requires that DSR be normally asserted.
4.4.5.2 CTS signal is High indicator

The “Clear-to-Send” (CTS) indicator light, located on the button bar (second indicator from the left), is an RS-232 protocol port indication. When lit, it indicates proper connection and that the value is High. The DMP protocol used requires that CTS be normally asserted.

4.4.5.3 Channel Selection

Select the radio channel on which you wish to send a test transmission by clicking the relevant available option button.

The program automatically detects which of sixteen channels are present on the connected unit. For each factory-set channel available, the relevant round option button and channel number is enabled (black). For each unavailable channel, the round option button and channel number appears disabled (grayed-out). Only one channel at a time may be selected.

Pressing the “Show All Channel Frequencies” button opens a sub-window (see Figure 8) listing in tabular form the radio transmitting and receiving frequencies programmed for each available channel(s).

To exit this sub-window, press the upper right system box.

Figure 8 - Show All Channel Frequency

4.4.5.4 RSSI & Power Out Indicators

The Radio Signal Strength Indicator (RSSI) bar graph usually displays in twin-columns the relative strength (in dBm) of an incoming RF signal on the selected channel.

The left column indication, labeled "I", shows the transceiver RX signal (rear mini-UHF connector).

The right column indication, labeled "II", shows the auxiliary RX signal (front mini-UHF connector).

Meter precision is usually better than 3 dBm.

This indicator functions as a single column "Power" (Watt) meter when using either of the test functions: "TXON (Modulated)" or "TXON (Unmodulated)" with a range of 0 to 60 watts. Precision is usually better than +/-3 watts.

Note: This internal wattmeter is designed for use as reference only and is not a substitute for a quality external precision measuring instrument.

4.4.5.5 TXON tests

TXON test functions are selected by choosing “Test” from the file menu, then “Modulated” or “UnModulated” command or by pressing the relevant button on the Toolbar.

4.4.5.5.1 Unmodulated Carrier

Unmodulated carrier gives a clear carrier and is frequently used for checking:
• Frequency error
• Forward and reverse power

Press the TXON (Unmodulated) button to transmit an unmodulated 20-seconds test signal on the channel selected or until the button is pressed again.

The functions of all the other buttons are inoperative during test transmissions.

Power check:
1- Connect an in-line power meter between the radio and the antenna.
2- Measure the forward (nominal 40W for UHF model and 35W for 800MHz model) and reflected power levels by powering TX ON
(<5% of forward power or as specified by System Eng.).

4.4.5.5.2 Modulated Carrier

Test transmission generates a carrier modulated with 1kHz sinewave, at deviation level that depends on model and network speed:

Table 3 - Carrier Modulation

<table>
<thead>
<tr>
<th>Carrier Modulation</th>
<th>Full Channel</th>
<th>Typical Deviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network Speed</td>
<td>Typical Deviation</td>
<td></td>
</tr>
<tr>
<td>RC4FSK 32000</td>
<td>± 4.5/±3.6 kHz</td>
<td></td>
</tr>
<tr>
<td>SRRC 4FSK 25600</td>
<td>± 4.0/±3.7 kHz</td>
<td></td>
</tr>
<tr>
<td>19200</td>
<td>± 4.5/±4.3 kHz</td>
<td></td>
</tr>
<tr>
<td>DGFMSK 19200</td>
<td>± 4.0 kHz</td>
<td></td>
</tr>
<tr>
<td>16000</td>
<td>± 4.0 kHz</td>
<td></td>
</tr>
<tr>
<td>9600</td>
<td>± 3.0 kHz</td>
<td></td>
</tr>
<tr>
<td>Half Channel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Network Speed</td>
<td>Typical Deviation</td>
<td></td>
</tr>
<tr>
<td>SRRC 4FSK 16000</td>
<td>± 1.6/±2.4 kHz</td>
<td></td>
</tr>
<tr>
<td>14400</td>
<td>± 2.0/±2.8 kHz</td>
<td></td>
</tr>
<tr>
<td>DGFMSK 9600</td>
<td>± 2.5 kHz</td>
<td></td>
</tr>
</tbody>
</table>

Different modulation types are not interoperable

1) UHF model 2) 800MHz model
3) USA NPSAP 821-824MHz &866-869MHz band model

This function is frequently used for checking frequency deviation.

Press the TXON (Modulated) button to begin transmitting a 20-seconds modulated test signal on the channel or until the button is pressed again.

The functions of all the other buttons are inoperative during test transmissions.

4.4.5.6 Ping Button

The Ping function checks connectivity by testing the ability of Gemini\(^\text{PD}\) to communicate with the base station by sending a short transmission query and receiving a confirming response.

1- Specify the channel (paragraph 4.4.5.3) and ping address (paragraph 4.4.5.7)
2- Press the Ping button to start ping testing.

The functions of all the other buttons are inoperative during ping testing.

The program sends a test query and continues transmitting pings at brief intervals.

As soon as a Ping test signal is returned from the address selected, the status bar displays:

- “Ping Successful” and ping testing stops.
- If no ping signal is received after 60 seconds, ping testing stops and the status bar displays “Ping Failed”.

4.4.5.7 Ping addresses

Addresses may be entered by typing directly in the “Ping Address” field in two ways:

1. Numerically, the valid address range is 1-126.
2. As an “Alpha-Mapped-Nibble” (AMN) address, consisting of upper case letters in the range A-P. The valid address range is A to GN.

The base address is usually: 1.

The program may display one of the following messages on the status bar:

For Paragon\(^\text{PD}\) product: “Ping address is not in AMN or number format” or

For Gemini\(^\text{PD}\) product: “Ping address is not in the range A – GN”

In either case, check that the address entered is within the acceptable range, is of a valid format and correctly typed.

4.4.6 Status Bar

The Status Bar is located along the bottom edge of the WinRIS window. To display or hide the bar, check or uncheck the command in the “View” menu.
The left area of the status bar describes actions of menu items as you navigate using the directional arrows. This area also shows messages describing actions of toolbar buttons as you depress them, before releasing them. If after viewing the description of the toolbar button command you wish not to execute the command, then release the mouse button while the pointer is off the toolbar button.

Warning and Caution messages appear in pop-up sub-windows. To close these message boxes, press the ESC key.

Three boxes on the right of the status bar indicate which of the following keys are latched down:

<table>
<thead>
<tr>
<th>Indicator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAP</td>
<td>The Caps Lock key is latched down.</td>
</tr>
<tr>
<td>NUM</td>
<td>The Num Lock key is latched down.</td>
</tr>
<tr>
<td>SCRL</td>
<td>The Scroll Lock key is latched down.</td>
</tr>
</tbody>
</table>

Table 4 - Key latch indications
5. Trouble-Shooting and Testing

The checks described below should be done at annual intervals or whenever deterioration in performance is noted.

5.1 Equipment Required

- 13.8 VDC (nominal) car battery, or 13.8 VDC/20A regulated power supply (In the case the unit is not installed in a vehicle)
- In-line watt meter (50W range)
- Radio service monitor (IFR or equivalent).
- Cable with mini-UHF male connector to connect GeminiPD to the service monitor.

5.2 Basic Tests

Recommended checks:
1. Transmit and Reverse power output
2. Carrier frequency error
3. Frequency deviation
4. Receivers RSSI Check
5. Link test between Gemini and the base station.
6. GPS test (not required on GeminiPD Lite model).

Refer to Table 5 for checks 1 to 5.

Important note: Before proceeding make sure that the service monitor has been calibrated recently and has warmed up for at least the time specified by its manufacturer.

Some reported frequency and deviation problems have actually been erroneous indications from service monitors that have not adequately warmed up. This is particularly likely when field service is done during winter months

Refer to the WinRIS section for function details

5.3 GPS Test

About three minutes after ignition is turned-on, the PWR LED on the GeminiPD front panel should flash in amber color at the rate of one pulse per second.\(^1\) This indicates that the GPS has acquired the sky position of a sufficient number of satellites to arrive at a ground position solution.

If the GPS has a good view of the sky and still has not generated any position solution within three minutes (it may take up to 10 minutes or more if the sky view is partially blocked.), the following trouble-shooting procedures should be undertaken to isolate the fault:

1) Disconnect the GPS antenna cable connector from the Gemini radio and check for + 5 VDC on the center pin of the GPS antenna connector on the radio using a Digital voltmeter (DVM). If the voltage is present, do not reconnect the cable and proceed to step 2.

2) With the DVM, measure resistance between the shell and the center conductor of the GPS cable, resistance should be between 100 and 300 Ohms, if it measures open or short circuit the GPS antenna is either a passive antenna which is the WRONG type, or a defective active antenna, replace with a known good active antenna.

3) Connect the new antenna to Gemini and wait about three minutes for the POSITION ACQUIRED indicator to start flashing on GeminiPD, if not, the Gemini radio or its GPS receiver is defective

\(^{1}\)Lit green and flashing amber for the 800MHz model under 2% duty cycle limit.
Table 5 - Tests, Full & Half Channel Units

<table>
<thead>
<tr>
<th>CHECKLIST</th>
</tr>
</thead>
<tbody>
<tr>
<td>STEP</td>
</tr>
<tr>
<td>-----------</td>
</tr>
<tr>
<td>1</td>
</tr>
</tbody>
</table>
| 2 | Connect and save config
Press WinRIS Get button | as per section 4.4.2 | | |
| 3 | Main transceiver Output Power
Press TX (Unmod) | UHF: 40 watts
800MHz: 35 watts
both +10%, -10%
Factory-settable down to 10 watts (5 watts for 800MHz model) as per customer request | Service monitor set to read power
or 50W in-line wattmeter | Refer to factory technical support. |
| 4 | Main transceiver Reflected Power
Press TXON (Unmod) | <5% of forward power or as specified by System Eng. | 10W in-line wattmeter | Check for bad connections, damaged coax cable, etc. |
| 5 | Carrier Frequency Error
Press TX (Unmod) | ±300 Hz | Service monitor set to read frequency error | Refer to factory technical support. |
| 6 | TX Deviation (KHz)
Press TXON (Modulated)
Carrier will be modulated with a 1 kHz tone. | xRC4FSK
UHF
800 US
800 CA
Speed:
32.0 kb/s
±4.5
±3.6
±3.6
25.6 kb/s
±4.0
±3.7
±3.7
19.2 kb/s
±4.5
±4.5
±4.5
Half channel unit
16.0 kb/s
±1.6
±2.4
±1.6
14.4 kb/s
±2.0
±2.8
±2.0
DGFSK, Full ch. unit:
19.2 and 16 kb/s: ±4.0 kHz
9.6 kb/s: ±3.0 kHz
DGFSK, Half ch. unit:
9.6 kb/s: ±2.5 kHz
Tolerance is +5%, -10% for all bit rates. | Service monitor set to read deviation
(IF filter set to Mid or 30 kHz position) | Refer to factory technical support. |
| 7 | RF Link test
“Ping” a base station
“Ping Successful” | as per section 4.4.5.6 | Check on the WinRIS RSSI bar graph if the base station is within range (i.e. better than -107dBm) or Refer to factory technical support. | |
| 8 | Main Receiver
RSSI checks
-70dBm
-110dBm
-120dBm | - 70 dBm +/-3
-110 dBm +/-3
-120 dBm +/-3 | WinRIS bar graph | Refer to factory technical support.
The RSSI checks give a good indication of receivers’ health. |
| 8 | Aux Receiver
repeat as per step 7 | same as step 7 | WinRIS bar graph | Refer to factory technical support. |

GeminiPD units are set and characterized at the factory to optimize performances. It is not recommended to try to readjust the units.
1 (unless you have set a lower value). Note that readings less than 40 watts (UHF model) or 35 watts (800MHz model) may be due to losses in cables used for testing. Check also your wattmeter frequency calibration curve. Do not be too ready to condemn the transmitter.
6. Specifications

GENERAL

<table>
<thead>
<tr>
<th></th>
<th>UHF</th>
<th>800 MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency Tx</td>
<td>403 - 512 MHz(^1)</td>
<td>806 – 824 MHz (821-824)</td>
</tr>
<tr>
<td>Frequency Rx</td>
<td>403 - 512 MHz(^1)</td>
<td>851 – 869 MHz (866-869)</td>
</tr>
<tr>
<td>Channel spacing</td>
<td>12.5 or 25 kHz</td>
<td></td>
</tr>
<tr>
<td>Frequency Control</td>
<td>Digital Synthesizer / uController</td>
<td></td>
</tr>
<tr>
<td>Frequency Stability</td>
<td>1.5 ppm</td>
<td></td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-30°C to +60°C (25°C nominal) @ 95% non-cond. RH</td>
<td></td>
</tr>
<tr>
<td>Modes of Operation</td>
<td>Simplex or Half Duplex</td>
<td></td>
</tr>
<tr>
<td>Number of channels</td>
<td>16 internally stored</td>
<td></td>
</tr>
<tr>
<td>Supply voltage</td>
<td>13.6Vdc nominal (negative ground)</td>
<td>10.9 – 16.3 VDC</td>
</tr>
<tr>
<td>Circuit Protection</td>
<td>15 Amp fuse external</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 & 4 Amp fuse internal</td>
<td></td>
</tr>
<tr>
<td>RX Current at 13.6 VDC</td>
<td>< 550 mA Standby (with auxiliary receiver)</td>
<td></td>
</tr>
<tr>
<td>TX Current at 13.6 VDC</td>
<td>< 15 A</td>
<td></td>
</tr>
<tr>
<td>TX/RX separation</td>
<td>5 MHz typical</td>
<td></td>
</tr>
<tr>
<td>Nominal Dimensions</td>
<td>7.050” D x 6.000” W x 2.000” H</td>
<td></td>
</tr>
<tr>
<td>Weight:</td>
<td>< 3.5 lbs.</td>
<td></td>
</tr>
<tr>
<td>RF input/output Impedance</td>
<td>50 ohms nominal</td>
<td></td>
</tr>
<tr>
<td>RF connector</td>
<td>Main TX/RX: mini-UHF female</td>
<td>Auxiliary RX: mini-UHF female</td>
</tr>
<tr>
<td></td>
<td>GPS RX: SMA female (Not installed for Gemini(^PD) Lite version)</td>
<td></td>
</tr>
<tr>
<td>Interface connector</td>
<td>3x DE-9F D-subminiature</td>
<td></td>
</tr>
</tbody>
</table>

RECEIVER

<table>
<thead>
<tr>
<th></th>
<th>< 0.35 µV *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity (12 dB SINAD)</td>
<td></td>
</tr>
<tr>
<td>Selectivity (25KHz)</td>
<td>75 dB typical</td>
</tr>
<tr>
<td></td>
<td>70 dB minimum</td>
</tr>
<tr>
<td>Selectivity (12.5)</td>
<td>65 dB typical</td>
</tr>
<tr>
<td></td>
<td>60 dB minimum</td>
</tr>
<tr>
<td>Intermodulation</td>
<td>75 dB typical</td>
</tr>
<tr>
<td></td>
<td>70 dB minimum</td>
</tr>
<tr>
<td>Spurious rejection</td>
<td>75 dB typical</td>
</tr>
<tr>
<td></td>
<td>70 dB minimum</td>
</tr>
<tr>
<td>FM hum & noise</td>
<td>-45 dB typical *</td>
</tr>
<tr>
<td>Conducted spurious</td>
<td>< -57 dBm</td>
</tr>
</tbody>
</table>

\(^1\) WARNING: The frequency band 406 to 406.1 MHz is reserved for use by distress beacons and should not be programmed into the unit.
TRANSMITTER

<table>
<thead>
<tr>
<th>Power output</th>
<th>UHF = 10-40 watts</th>
<th>800 MHz = 5-35 watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duty cycle</td>
<td>20% @ full power, 30 secs. max. TX time (subject to FCC MPE limit)</td>
<td></td>
</tr>
<tr>
<td>Conducted Spurious</td>
<td>-75 dBc (-38 dBm @10 W) typical</td>
<td></td>
</tr>
<tr>
<td>Frequency stability</td>
<td>1.5 ppm</td>
<td></td>
</tr>
<tr>
<td>FM hum and noise</td>
<td>-45 dB max (25 kHz)</td>
<td></td>
</tr>
<tr>
<td>Attack time</td>
<td>< 10 ms</td>
<td></td>
</tr>
</tbody>
</table>

Operation

| Simplex/half duplex |

Data rates and Modulation type

- DGFSK (9600 b/s), (19200 b/s) *
- SRRC4FSK (19200 b/s), (25600 b/s) *

Packet Error Rate (for < 1% error)

- better than –112 dBm at 19200 b/s full channel, with P/D (DGFSK)*
- better than –110 dBm at 25600 b/s full channel, with P/D (SRRC4FSK - UHF)*
- better than –109 dBm at 25600 b/s full channel, with P/D (SRRC4FSK – 800MHz)*

Protocol Data radio proprietary DBA

* Networks must use common modulation, bit and baud rates. Different types are not on-air compatible

DISPLAY and CONTROLS

2 status LEDs RX/TX, PWR

Environmental MIL. spec.

<table>
<thead>
<tr>
<th>Environment</th>
<th>Categories</th>
<th>MIL Spec. 810E</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low Pressure</td>
<td>Operations</td>
<td>500.3</td>
<td>II</td>
</tr>
<tr>
<td>High Temperature</td>
<td>Operations, Storage</td>
<td>501.3</td>
<td>II(A1), II</td>
</tr>
<tr>
<td>Low Temperature</td>
<td>Operations, Storage</td>
<td>502.3</td>
<td>II(C3), II(C1)</td>
</tr>
<tr>
<td>Temperature Shock</td>
<td>Transfer of equipment</td>
<td>503.3</td>
<td>II(ALC2)</td>
</tr>
<tr>
<td>Solar Radiation</td>
<td>Heat effects</td>
<td>505.3</td>
<td>I</td>
</tr>
<tr>
<td>Rain</td>
<td>Drip rain</td>
<td>506.3</td>
<td>II</td>
</tr>
<tr>
<td>Humidity</td>
<td>Induced, Aggravated</td>
<td>507.3</td>
<td>III</td>
</tr>
<tr>
<td>Dust</td>
<td>Blowing dust</td>
<td>510.3</td>
<td>I</td>
</tr>
<tr>
<td>Vibration</td>
<td>Ground Mobile</td>
<td>514.4</td>
<td>II(B)</td>
</tr>
<tr>
<td>Shock</td>
<td>Functional, Bench handling</td>
<td>516.4</td>
<td>LVI</td>
</tr>
</tbody>
</table>

FCC / IC CERTIFICATIONS

<table>
<thead>
<tr>
<th>FCC</th>
<th>IC (DOC)</th>
<th>Bit rate</th>
<th>Baud rate</th>
<th>Modulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>UHF</td>
<td>EOTGPDA</td>
<td>9600</td>
<td>9600</td>
<td>DGMSK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16000</td>
<td>16000</td>
<td>DGMSK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19200</td>
<td>19200</td>
<td>DGMSK</td>
</tr>
<tr>
<td>800 MHz</td>
<td>EOTGPDB</td>
<td>19200</td>
<td>9600</td>
<td>SRRC4FSK*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25600</td>
<td>12800</td>
<td>SRRC4FSK*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16000</td>
<td>8000</td>
<td>SRRC4FSK*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14400</td>
<td>7200</td>
<td>SRRC4FSK*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>32000</td>
<td>16000</td>
<td>RC4FSK*</td>
</tr>
</tbody>
</table>

EMISSION DESIGNATORS

<table>
<thead>
<tr>
<th>Bit rate</th>
<th>Baud rate</th>
<th>Modulation</th>
<th>UHF</th>
<th>800MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>9600</td>
<td>9600</td>
<td>DGMSK</td>
<td>8K60FID</td>
<td>8K60FID</td>
</tr>
<tr>
<td>16000</td>
<td>16000</td>
<td>DGMSK</td>
<td>15K3FID</td>
<td>15K3FID</td>
</tr>
<tr>
<td>19200</td>
<td>19200</td>
<td>DGMSK</td>
<td>15K0FID</td>
<td>15K0FID</td>
</tr>
<tr>
<td>19200</td>
<td>9600</td>
<td>SRRC4FSK*</td>
<td>16K0FID</td>
<td>16K0FID</td>
</tr>
<tr>
<td>25600</td>
<td>12800</td>
<td>SRRC4FSK*</td>
<td>15K6F1D</td>
<td>15K6F1D</td>
</tr>
<tr>
<td>16000</td>
<td>8000</td>
<td>SRRC4FSK*</td>
<td>8K17F1D</td>
<td>10K0F1D</td>
</tr>
<tr>
<td>14400</td>
<td>7200</td>
<td>SRRC4FSK*</td>
<td>8K67F1D</td>
<td>11K0F1D</td>
</tr>
<tr>
<td>32000</td>
<td>16000</td>
<td>RC4FSK*</td>
<td>16K8F1D</td>
<td>15K6F1D</td>
</tr>
</tbody>
</table>

* IC – Class II permissive change

1 MIL Specification not guaranteed with GeminiPD Lite version.
Appendix 1 - "Officer Requires Assistance" alarm function

The contents of this appendix are also available as Technical Instruction Sheet 009 (TIS009), document part number 122 20110-009 dated December 20, 2000.

Overview
The DTE Port Interface pin 9 (AUX) on DEV-2 is used for the “Officer Requires Assistance” alarm function.

Intended Audience
This document is designed for use by System Integrators.

Physical Connection
This auxiliary input may be activated by (normally open) dry contact pull-up to the port’s DSR output. It can also tolerate user pull-up to external +12 VDC (car battery), but an isolated dry contact is preferred due to the risk of noise-related false alarms caused by the vehicle’s electrical system.
A +3 to +12 V signal at this pin will send a DMP “x” (On) message to the base.
An open or ground signal will send a DMP “y” (Off) message.
Messages are only sent when a signal transition occurs (debounced for approximately 100 ms).

Operation
When using Gemini^{PD} or Gemini^{PD} Lite products, activating the “Officer Requires Assistance” alarm input starts emergency communications:
- The modem creates DMP “x” or “y” messages.
- Any other pending message(s) will be failed to avoid delaying the alarm message on account of lower priority traffic and to remove non-emergency messages from duty-cycle management (if applicable). In the case of a “q” message, a D-NAK* will be immediately returned.
- Base and Channel hunt will take place for the usual number of retries per base (according to configuration) but will cycle forever until D-ACKed* or Reset*.
- Lack of base DBA synch will not prevent transmission to maximize the chance that a base gets the alarm signal. DBA “Freewheel” mode will be forced until the alarm is acknowledged.

* For details on DMP terms, refer to DMP 1.5 manual, version 4.0