Emergency Power

Earl McDow K4ZSW@ARRL.net

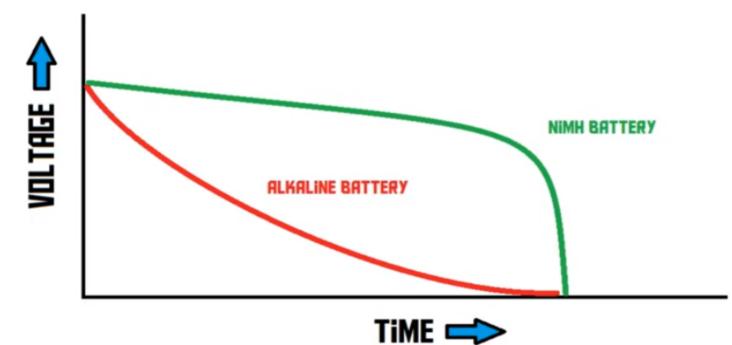
Jeff Capehart W4UFL@ARRL.net

Without power we own boat anchors

Emergency Power – What we will Cover Today

- The little guys HT, AA, and AAA
- The Big Guys FLA, SLA, and LiFePO₄
- How big does my battery need to be (Size Matters)
- Solar Let the sunshine in
- Generators big and small
- Putting it all together with an ounce of prevention
- Inverters
- Living in a 13.8v, 5.1v, and 25+v world
- Conclusion

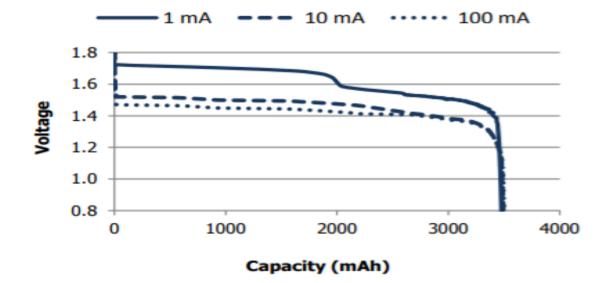
Emergency Power – The Little Guys



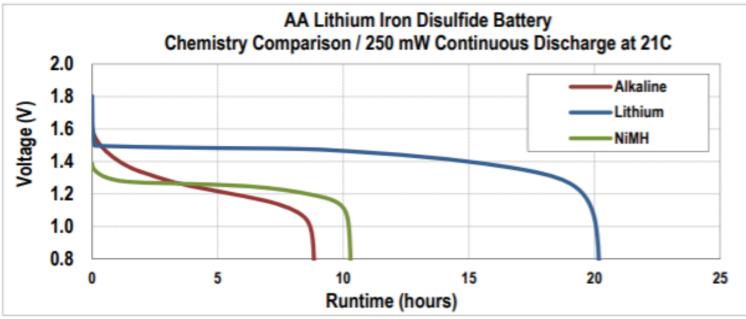
Emergency Power – AA Options

AA Battery	Cost/unit	mAh	Voltage	Recharges	Brand	Charge Retention
Alkaline	\$0.76	2500	1.5	None	Duracell	10 yr
Lithium	\$3.80	3500	1.5	None	Energizer	20 yr
NiMH	\$2.50	2000	1.2	1000	Energizer Recharge	10 yr
NiMH	\$4.37	2550	1.2	500	Eneloop Pro	85% @ 1yr
NiMH	\$2.38	1900	1.2	2100	Eneloop Std	70% @ 10 yr

Emergency Power - NiMH/Alkaline Discharge Rates



Emergency Power - AA Lithium Discharge Rates



Constant Current Discharge

Emergency Power - Battery Chemistry Discharge

(Fig. 6) Relative Constant Power Performance of an AA Size Battery (different chemistries)

Emergency Power - AA Runtime Costs

Chemistry	Unit	Runtime	#	20 hr s	40 hrs	200 hrs
Lithium	\$3.80	20 hrs	1	\$3.80	\$7.60	\$38.00
Alkaline	\$0.76	5 hrs	4	\$3.04	\$6.08	\$30.40
NiMH	\$2.38	10 hrs	2	\$4.76	\$4.76	\$4.76

Emergency Power - Handheld Charging Options

NiMH Charger

AA NIMH Rechargeable **Batteries**

A single NiMH rechargeable battery equals 10 alkaline batteries.

Four Year Cost of Ownership (Wirecutter) Alkaline \$0.76 X 10 = \$7.60 $$2.38 \times 1 = 2.38 NiMH $$4.37 \times 1 = 4.37 NIMH

Emergency Power – Power Up Baofeng

Emergency Power – The Big Guys

Emergency Power - Battery Chemistry

- Flooded Lead Acid Wet Cell
- Sealed Lead Acid Valve Regulated Lead Acid
 - GEL Electrolyte in Gel form
 - AGM Absorbed Glass Mat
- LiFePO₄

Emergency Power - Flooded Lead Acid

- Top side up only
- Require regular monthly maintenance
- Liquid levels need to be checked monthly and topped off with distilled water
- Lead Acid batteries release toxic hydrogen gas when charging
- They need to be vented to the outside to prevent hydrogen gas buildup

Emergency Power - Sealed Lead Acid

- Absorbed Glass Mat & GEL Batteries
- AGM & GEL Orientation independent
- AGM & GEL maintenance free
- AGM & GEL are Valve Regulated Lead Acid can vent Hydrogen gas
- Absorbed Glass Mat most popular SLA with 90+% of market

Emergency Power - Sealed Lead Acid

- GEL are more expensive than AGM
- GEL excellent at very slow deep discharge
- GEL also last longer in hotter temperatures
- GEL It is critical that the correct charging parameters are used
- AGM more resistant to vibration
- AGM batteries can handle higher charge and discharge rates than GEL batteries

Emergency Power - AGM vs LiFePO₄

100 Ah AGM (Absorbed Glass Mat) vs LiFePO₄

Characteristic	AGM	LiFePO ₄		
Safety	VRLA	Safest Li Chemistry		
Weight	60 lbs	27 lbs		
Life Cycles(100% DOD)	300	2000 - 3000		
Flat Discharge to <12V	1.5 hrs	4 hrs		
Capacity usage	50% - 50Ah	85 - 90% - 90Ah		
Time for Full Charge	8 hrs	2 hrs		

Emergency Power - AGM vs LiFePO₄

100 Ah AGM (Absorbed Glass Mat) vs LiFePO₄

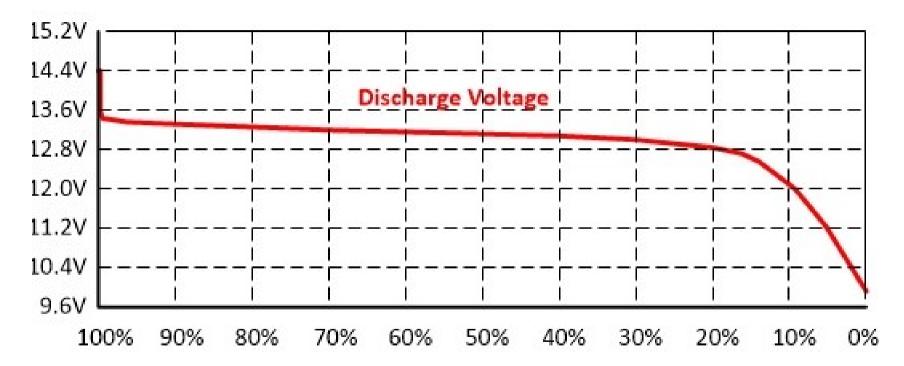
Characteristic	AGM	LiFePO ₄
Self Discharge (80%)	4 months	8 months
Initial Cost/warranty	\$223 1 yr	\$380 10 yr
Cost for 100 Ah (2 x AGM – 1 x LiFePO ₄	\$446	\$380
10 Yr Cost of Ownership	4 x \$446 = \$1,784	100Ah - \$380

Emergency Power - COO SLA vs LiFePO₄

Battery Chemistry	Usable 100 Ah Cost	Cycles	Life (Yrs)	100Ah Cost	#	COO-10
AGM (Absorbent Glass Mat)	2 x \$223	500	4 to 7 (5)	\$446	4	\$1,784
GEL	2 x \$250	700	2 to 5 (5)	\$500	4	\$2,000
LiFePO ₄	\$380	3000	5 to 10 (5)	\$380	2	\$760

Emergency Power - Main Batteries

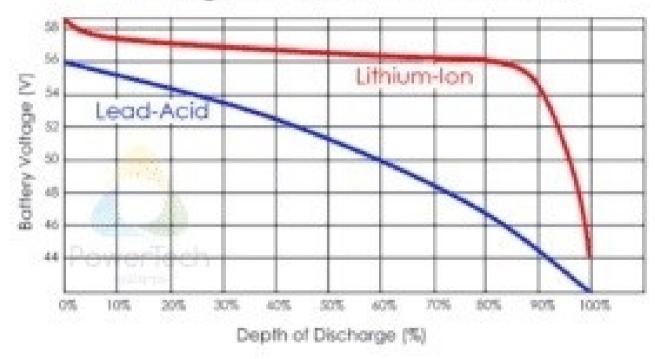
RENOGY

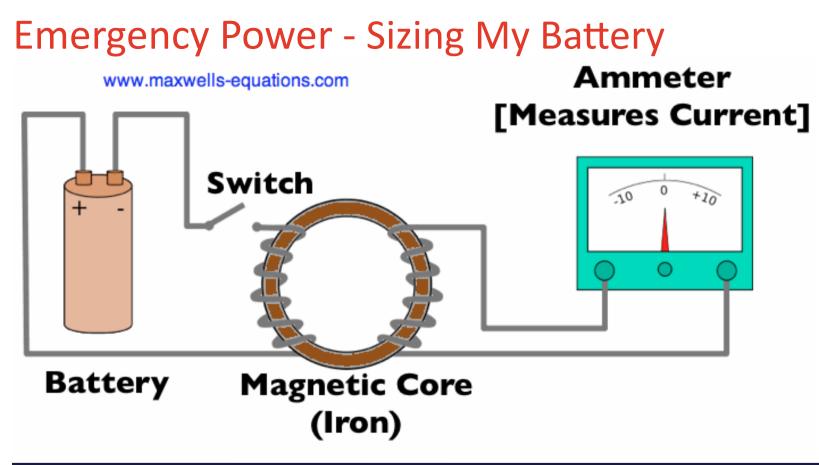

12V 36Ah **LiFePO**₄ Battery (\$130)

12V 100Ah Lithium LiFePO₄ Battery (\$380)

12V 20Ah Deep Cycle LiFePO₄ Battery (\$70) vs SLA (\$40)

12V 100AH **Deep Cycle AGM SLA** Battery (\$223)


Emergency Power - LiFePO₄ **Discharge Curve**



Emergency Power - LiFePO₄ vs Lead Acid Discharge

Discharge curve : Lithium-Ion vs Lead Acid

Emergency Power - Go Box DC Wh Calculations

	Deployed						
12 Volt Device	Watts	Amps	Hours	Mins	Ah/ Day	3 Days	7 Days
IC-706 Tx	240	20	1	10	23	69	161
IC-706 Rx	24	2	6		12	36	84
Misc loads	36	3	2		6	18	42
Total Ah for IC-706MKIIG					41	123	287
Total Wh for IC-706MKIIG					492	1476	3444

https://qsl.net/nf4rc/2021/SolarPowerEducationalModule.pdf

Emergency Power - Solar Panels

- Monocrystalline solar panels 12.5% 20%
- Polycrystalline solar panels 11% 18%
- Thin-film (amorphous) solar panels 5% 9%
 - Thin-film has lower losses & performs better in:
 - Hot climates and higher temperatures (FL)
 - Low irradiation conditions, i.e. early in the morning, at sunset and in cloudy weather
 - Partial shading conditions
 - Low cost, low weight and high durability

Emergency Power - Charge Controllers

- PWM Pulse Width Modulation
 - Less Expensive
 - Pulses generate RFI
 - Inefficient operation

Backli LCD To disign operating information and error codes

Renogy 30A 12V/24V PWM \$54

- **MPPT Maximum Power Point Tracking**
 - Input Power equals Output Power
 - Support higher voltage panels efficiently
 - Less RFI

Renogy Rover 40A 12V/24V DC Input MPPT \$170

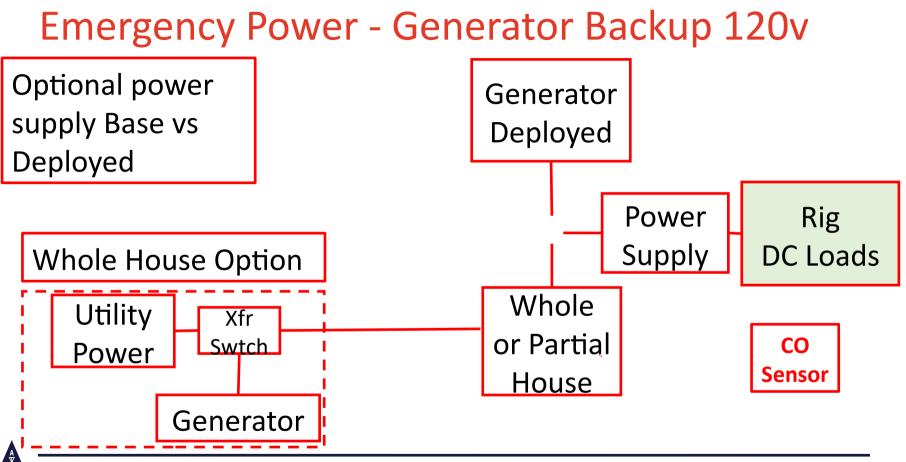
Emergency Power - PWRGate Transfer Switches

Epic PWRgate \$190 Multiple Charge Options Solar Panel Connection 40A MPPT Controller

Chunzehui F-1006 (\$45) Low Loss Power Gate PWRpath

Emergency Power - Solar Backup

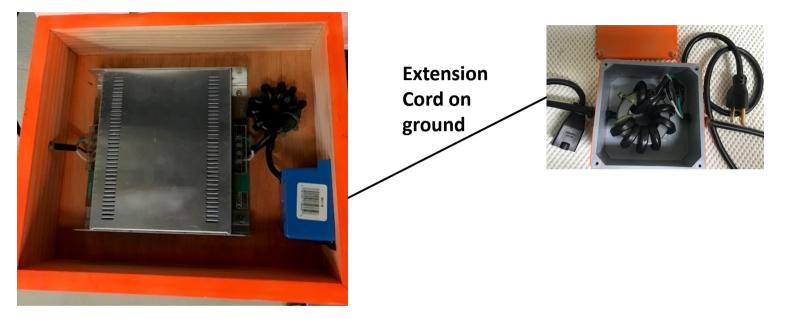
Battery Calculation	Ah	Wh	Comments
IC-706MKIIG GO Box	41	492	Load in Wh
2 Days Autonomy	82	984	2 cloudy days
Battery LiFePO4 (90%)	1x100Ah	1x1200 Wh	
Battery Lead Acid (50%)	2x50Ah	2x600 Wh	
Battery Size		1200 Wh	Size Battery in Wh
Solar Panel Sizing	Amps	Watts	Comments
Solar Panel (5 day Index)	16	240	Battery Wh/5
Round up for safety	25	250	Round up
MPPT Controller (Amps)		21 amps	Panel Watts/12 V


Emergency Power - Generators

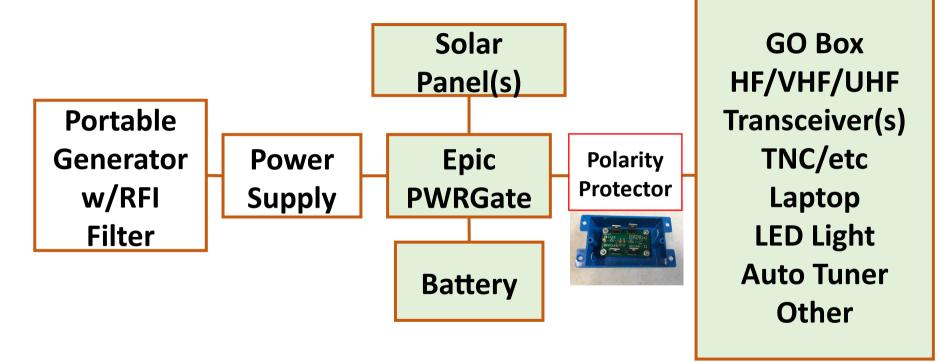
Emergency Power - Fixed and Portable Generators

Whole House Surge Protection

23KW Propane (500 gal) Whole House Generator


Transfer Switch What about RFI/Noise?

- **1.8KW Portable** Generator
- 3 8 hours/gal


Emergency Power - RFI Low Pass Filter

https://qsl.net/nf4rc/2020/LabNLunchACCommonModeChoke.pdf

Emergency Power - Putting it all Together

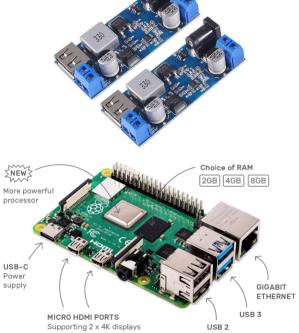
https://qsl.net/nf4rc/2021/ConstructionManual.pdf

Emergency Power - 120v Inverters

300W Pure Sine Wave Inverter (\$50)

1000W Pure Sine Wave Inverter (\$162) 2000w Pure Sine Wave Inverter (\$595)

Emergency Power - 120V Load Calculations


120VAC Device	TX Watts	RX Watts
Diamond PS TX	120	
Diamond PS RX		31
USB Power (included in PS)	10	10
Laptop Charger	30	30
Battery Charger	30	30
LED Light	14	14
Total Watts for IC-7300 Go Bo	ox 204	115

Emergency Power - Low Voltage World

Emergency Power - Laptop Charging

Emergency Power - Other Devices

Boost Buck Converter, DROK DC 5.5-30V to 0.5-30V Adjustable Power Supply Regulator Module, 4A 35W Step Up Down Converter Board (\$15) Geekworm Raspberry Pi UPS, X728 18650 UPS & Power Management Board with AC Power Loss, Auto On & Safe Shutdown (\$46)

Geekworm Raspberry Pi Cooling Fan

Emergency Power - USB Devices

- Raspberry Pi
- Phone Chargers
- Other USB

Buck Converter 12v to 5v 5A USB Voltage Regulator (2 for \$11) DC Converter with Battery Clips (\$15) (Replace with Power Pole Connectors)

Emergency Power - Conclusion

Be Prepared

- Keep battery(s) charged
- Keep Extra non-rechargeable batteries
- Keep computers updated and charged
- Test Generators un-Loaded and Loaded
- Test Go Box and all supporting equipment
- Keep equipment organized with check list and readily available

Emergency Power - Handy URLs

- North FL Radio Club <u>https://qsl.net/nf4rc/EducationalArticles.html</u>
- How to Size your Solar Power System <u>https://www.youtube.com/watch?v=TJBGbufexEM</u>
- Complete LiFePO₄ Solar Battery System Design -<u>https://www.youtube.com/watch?v=_PgthByAYz4</u>
- <u>Emergency Lighting</u> <u>https://www.youtube.com/watch?v=ZNa-JHPnpgM</u>
- Will Prowse https://www.youtube.com/watch?v=TJBGbufexEM

Thank You!

May the Electromotive Force be with you!

Be Prepared!

Emergency Power

