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The presented FMCW radar project is operating in C-Band, 5.6GHz, have a wide 
bandwidth (800MHz), and uses two separate receivers with independent antennas, which 
makes available a new approach named Directional of Arrival (DoA). 

 
Understanding FMCW Radar waveforms 
 
Continuous wave radar signals with a linear frequency modulation are applied in many 

radar systems. FMCW radars have low transmit power compared to pulse radar systems. 
This allows the radar to be smaller in size and lower in cost.  

• An important feature of the FMCW radar is the zero-blind range, as both, the 
transmitter and the receiver are always ON.  
Pulse radars suffers from blind-range and blind-speed phenomenon’s, due to pulse 
(frequency) repetition time characteristic of the signal. 

• Key performance indicators of FMCW radars are: range resolution, ambiguity and 
accuracy of measured distance range, and the radial velocity (speed) of the target.  
While the resolutions depend on signal bandwidth and the length of the chirp (period 
of the modulation signal), range accuracy requires in the first place a high signal to 
noise ratio of the radar echo signal and also a high linearity of the modulated signal. 

• The FMCW radar presented in this project use a Sawtooth modulation signal. 
- An FMCW radar transmits a signal called “chirp”. A chirp is a sinusoid whose 

frequency increases linearly with time, as shown in the plot below. 

- A Voltage Controlled Oscillator (VCO) generates the chirp signal.  

The VCO frequency is controlled via tuning line by a ramp generator, having a 
Sawtooth, Triangle, or Sinusoid, waveform.  

- A chirp can be represented on a Frequency vs Time plot or on a Amplitude vs 
Time plot. 

 
Fig.1 - FMCW radar signal using Sawtooth ramp 

http://qsl.net/va3iul


- From the plot above can be seen that the frequency of the chirp increases linearly 

with ascending sawtooth ramp. 

- A chirp is characterized by: a start frequency fo (in Hz), a Bandwidth B (in Hz), 

and by a sweep time duration Tchirp (in seconds). 

- The Slope S of the ramp defines the rate at which the chirp ramps up.  

The slope S is in Hz/sec (or MHz/usec), and is given by:  

 

                                                        S = B / Tchirp                                                (1) 

 

For example, if the chirp is sweeping a bandwidth of 4 GHz in a period of time of 

40usec, this corresponds to a Slope of 100 MHz/usec. 

 

Fig. 2 - FMCW Radar Block Diagram 

 

- The chirp is transmitted by the TX antenna towards the target. 

- The chirp is reflected by the target object and the reflected chirp is received at the 

RX antenna. 

- The received RX-signal and the transmitted TX-signal are “mixed” in a mixer and 
the resulting signal is called an IF-signal (or baseband signal), signal which is 
processed by the radar system to obtain the desired information as: range 

(distance to the target) R, target position, and target velocity 𝑣r  (speed). 

 
  
 
 
 

 
 

 
Fig. 3 - TX and RX FMCW radar signals using Sawtooth modulation signal [1] 

 
- The top figure shows the TX-signal and the RX-signal that is reflected from an 

object. Note that the RX-signal is just a delayed version of the TX-signal.  

- Signal propagation time 𝜏 (tau) in seconds, denotes the round-trip time 

between the radar and the target object. Note that 𝜏 (tau) is typically a small 

fraction of the total chirp.  



- The frequency of the IF-signal at the mixer output is the difference of the 
instantaneous frequency of the TX-chirp and RX-chirp. 

- A single object which is not moving in front of the radar produces an IF-signal that 
is a constant frequency tone named beat frequency fb. 

- Multiple objects in front of the radar produce multiple reflected chirps at the RX 
antenna, and the IF-signal will reveal multiple tones, and the frequency of each 
tone being proportional to the range (distance) of each object from the radar.  
 

• Fourier Transform converts a Time domain signal into the Frequency domain. 
- A sinusoid in the Time domain produces a peak signal in the Frequency 

domain.  
- In general, the signal in Frequency domain is complex (i.e., each value is a 

phasor with amplitude and a phase).  
- The phase of the peak signal is equal to the initial phase of the sinusoid. 

 
Fig . 4 

- An object in front of the radar produces at the receiver output an (FFT) IF-
signal (beat signal fb) with certain frequency and phase (Fig. 4).  

- The phase of the IF-signal is very sensitive to small changes in object range 
(small movements from the radar).  

Small motion of the object, changes the phase of the IF-signal, but not its 
frequency. 

 

• Range Resolution refers to the ability to resolve two closely spaced objects.  
- If the range resolution is low, two objects that are too close they show up as 

a single peak in the frequency spectrum.  
- Two objects can be resolved by increasing the length of Tchirp.  

This proportionally increases the sweep bandwidth B (frequency sweep 
range of the RF frequency), and also increase the IF-signal bandwidth.  

- Greater the sweep bandwidth B, better the range resolution.  
- The maximum IF-signal bandwidth (or length) of interest depends on the 

desired maximum distance to the target (maximum beat frequency fb). 
- The IF-signal is typically digitized (LPF+ADC) for further processing on DSP. 
- The IF-signal bandwidth is thus limited by the ADC sampling rate Fs. 
- The ADC sampling rate Fs limits the maximum range of the radar Rmax: 

                     
                                             Rmax = Fs*c*2*S = Fs*c*2*(B/Tchirp)                  (2) 

 
where c is the speed of light (m/sec), S is the ramp Slope (Hz/sec), B is bandwidth (Hz), 
Tchirp is sweep time (sec) and Fs is ADC sampling rate (number of samples per second).  



The Sawtooth function versus time f(t) is given by:  
   

f(t) = fo + (B / Tchirp)*t                                        (3) 
 
where: fo is the start frequency (in Hz), B is the bandwidth (in Hz), Tchirp is sweep time or 
the chirp length (in seconds), and t is the time (in seconds). 
 
Example: For two chirps, A and B, if chirp A has half of the slope of chirp B, for the same 
maximum range Rmax requirement, the chirp A would require only half of the IF bandwidth, 
which translate to an ADC with smallest sampling rate. So, chirp A has more relaxed ADC 
requirements, but chirp B has only half of the measurement time. 
 

 
Fig. 5 

When the target reflects the TX radiated signal, at the receiver, the RX demodulated signal 
has the same sawtooth waveform as the TX modulated signal, but delayed in time by the 

round-trip propagation time 𝜏.  
The range R (distance to the target) is calculated as follows: 

R = (c*𝜏) / 2                                                       (4) 

with: c is the speed of light (meters/second), and 𝜏 is the propagation time (in seconds). 

As was mentioned, at the receiver, a certain frequency shift between TX and RX signals, 
called beat frequency (fb) is introduced when the target reflects the radar wave.  

• Signal round-trip propagation time 𝜏 and beat frequency fb are equivalent and are 

linked together according to: 

                                                       (𝜏  / Tchirp) = (fb / B)                                             (5) 

 
Using the equations (4) and (5), the distance range R could be also expressed as: 
 
                                                       R = (c / 2) * (Tchirp / B) * fb                                                      (6) 
 

• The distance range equation (6) is valid only if the target is not moving, for example 
if the echo signal have no Doppler shift. 

• For a single target that is not moving, the beat frequency fb is expressed as: 
 
                                                   fb = (2*R*B) / (c*Tchirp)                                    (7) 

                                                   fb = (𝜏 *B) / Tchirp                                             (8) 



 

• A moving target induces a Doppler frequency shift fD, which is related to the 

speed of the target 𝑣r and also to the wavelength λ (frequency) of the TX signal: 

                               fD = (2*𝑣r) / λ = (2*𝑣r*fc) / c                                            (9) 

 

• The relative target velocity (speed) 𝑣r in meters per second is given by: 

 

                               𝑣r = (c*fD) / (2*fc)                                                           (10) 

 
where: fD is the Doppler frequency in Hz, fc is the TX carrier (central) frequency in Hz, 
and c is the speed of light in meters per second. 

• The beat frequency fb is not only related to the range R of the target, but also to its 
relative radial velocity with respect to the radar. 

For a moving target, the beat frequency fb includes two frequency components: f𝜏 due to 

signal propagation time delay 𝜏, and the frequency shift fD due to the Doppler effect: 

 

fb = f𝜏 + fD = (2*B*R) / (c*Tchirp) + (2*𝑣r) / λ                             (11) 

 

where: 𝑣r is the radial velocity (speed of the target in meters per second), λ is the TX 

signal wavelength in meters, B is the bandwidth in Hz, R is the distance range in meters. 

• The beat frequency equation (11) contains two unknown variables, R and 𝑣r.  

Therefore, when using a sawtooth modulation signal, and if the target is moving, the 
measurement of the beat frequency fb is insufficient to determine the range R and radial 

velocity (speed) 𝑣r of the target. 

 
    
 
 
 
 
 
 

Fig. 6 - Frequency shift in the echo radar signal due to Doppler effect and range [1] 

 
To solve the issues of moving target, few solutions can be used: 
 

1. First solution would be to replace the sawtooth modulation signal, with a triangular 
signal, having two different slopes, up and down.  

 
This results in having two chirps, one positive (up-chirp) and one negative (down-chirp). 
Thus, will be two independent measurements of the beat frequency: fb1 and fb2. 



fb1 = (2*B*R) / (c*Tchirp) + 2*𝑣r                                        (12) 

fb2= - (2*B*R) / (c*Tchirp) + 2*𝑣r                                                   (13) 

Equations (12) and (13) for fb1 and fb2, can be used for finding the range R and speed 𝑣r.  

 
 
 
 
 
 
 
 

Fig. 7 - Linear FMCW radar with up-chirp and down-chirp using triangular waveform [1] 
 

• The advantage of using the triangular waveform is the ease of implementation and 
the avoidance of sharp frequency transitions compared to sawtooth waveforms. 

• The drawback of triangular waveform is when have multi target situations, and range 
and radial velocity cannot be resolved unambiguously by two consecutive chirps 
measuring different beat frequencies. This causes “ghost” targets which can be 
resolved by additional chirps with different slopes transmitted in FMCW radar. 
 

2. If the radar transmits two sawtooth consecutive chirps, in IF spectrum, after the 
Fourier Transform (range-FFT), each chirp will have peaks in the same location on 
the frequency spectrum, but with differing phase.  
The phase difference (change) of ω radians measured over two consecutive 
chirps will be:  

                                                 ω = (4*Π*𝑣r*Tchirp) / λ                                   (14) 

This can be used to estimate the radial velocity (speed) 𝑣r of the object: 

                                           𝑣r = (λ* ω) / (4*Π*Tchirp)                                (15) 

 
If we know the phase change ΔФ between two consecutive chirps (due to small 
motion of the object in time), we can find the distance Δd, which is the small 
distance that the object moves during the period of time:   
                                                 Δd = (λ* ΔФ)/(4* Π)                                       (16) 

                                                 Δd = 𝑣r*Tchirp                                                 (17) 

The maximum relative speed 𝑣max that can be measured by two chirps spaced 

Tchirp apart is:  

                                           𝑣max = λ / (4*Tchirp)                                         (18) 

Thus, to get higher maximum speed 𝑣max requires closely spaced chirps. 

 
3. Another solution, for solving simultaneous range and velocity measurements, is to 

use a frame (a block) of very fast sawtooth waveforms (chirps).  



This waveform is called Chirp Sequence (CS) and consists out of several very short 
FMCW chirps, each with a duration of Tchirp transmitted in a block of length Tframe. 
Due to the fact that a single chirp is very short, the beat frequency fb is mainly 
influenced by signal propagation time, and the Doppler frequency shift fD can be 
neglected in the first processing step. 

 
   
 
 
 
 
 
 
 

Fig. 8 - Chirp Sequence using very short sawtooth chirps transmitted in blocks (frames) [1] 
 

Then, under the assumption that the radial velocity is 𝑣r = 0, the target range R (so the 

beat frequency fb), is determined as in normal FMCW by the equation (6). 
 

• In Chirp Sequence CS, the radial velocity (speed) 𝑣r is not measured during a 

single chirp, but instead over a block of consecutive chirps with the duration of Tframe.  

• In the signal processing, a second Fourier transformation is performed along the 
time axis, which will then yield Doppler frequency shift fD. 

• The velocity resolution of the radar 𝑣res is inversely proportional to the frame time 

Tframe (higher Tframe , better velocity resolution): 

                                                𝑣res = λ / (2*Tframe)                                        (20) 

 
In the Chirp Sequence method (using sawtooth waveform), usually the following values 
for Tchirp, Tframe, and for bandwidth B are used:  

• Tchirp is between few microseconds up to hundred microseconds, and number of 
chirps (periods) inside of the block is typically between 100 and 1000.  

• Tframe is defined by the desired radial velocity and is about 20 milliseconds. 

• Bandwidth B (which defines the range resolution) depends by the operating 
frequency band and varies between about 100MHz and 5GHz.   

 
Linearity of the Transmitted Signal 
 
A perfect linear FMCW signal would have a linear frequency vs time characteristic (blue 
line in the first plot of Fig. 9).  

• For a stationary object in front of the radar, the frequency of the beat frequency fb 
will be constant (horizontal green line in the second plot of Fig. 9), which in 
received frequency spectrum (FFT) will be a peak signal (the vertical green line in 
the third plot of Fig. 9). 



  

 
Fig. 9 - Beat frequency fb variation with a linear shape of the frequency deviation [1] 

 

• There are several effects which reduce the linearity of the signal, which in turn 
reduces the FMCW radar performance. 

• If occur a slow frequency deviation from a perfect linear signal slope over a certain 
bandwidth, the beat frequency fb will exhibit a trend to change, which in received 
frequency spectrum (FFT) will not be shown anymore as a peak signal (Fig. 10 -3).  
This happens due to the down conversion of the received signal with the 
instantaneous transmit frequency.  

This situation will decrease the measured range, decrease the accuracy and resolution of 
the radial velocity estimation, as the beat frequency measurement is less accurate.   
  

 
Fig. 10 - Beat frequency fb variation due to nonlinear shape of the frequency deviation [1] 



Another possible distortion in the transmit signal are ripples on the TX signal.  
 

 
Fig. 11 - Ripple on TX signal and resulting variation of the beat frequency fb [1] 

 

• The frequency deviation distortions affect the measurement accuracy of the beat 
frequency and causes unwanted side-lobes to appear in the received signal 
spectrum FFT (as shown in the third plot of Fig. 11).  

• These distortions affect the range and velocity resolutions, and the measurement 
accuracy during the FMCW signal processing. 

• The main reason of the frequency deviation distortion of the TX signal is the 
nonlinearity (MHz/Volt) of the VCO (voltage controlled oscillator), and to be more 
accurate, the principal contributor is the nonlinear characteristic (capacitance vs 
reverse voltage) of the varactor diode which usually is used to tune the oscillator 
frequency. However, the project presented here do not use a varactor in its VCO. 

 
The range resolution Rres which is the ability of the FMCW Radar to distinguish between 
two adjacent target objects, is given by: 
 

Rres = c / (2*B)                                                    (21) 
 

• A better range resolution Rres (in meters) requires a higher bandwidth B (in Hz). 
 
For example, a signal bandwidth B of 100MHz determines a range resolution of 1.5m, and 
a signal bandwidth B of 800MHz (as the radar in this project has) determines a range 
resolution of 0.18m.             (3*108)/(2*800*106) 



• Larger the chirp (signal) bandwidth, gives better range resolution, but also makes 
larger the IF bandwidth (which needs higher ADC sampling rate).   

 

The FMCW radial velocity (speed) resolution 𝑣res in meters per second is defined by the 

TX central frequency fc and by the chirp length Tchirp: 
 

𝑣res = c / (2*fc*Tchirp)                                          (22) 

 
where: fc is the TX central frequency (in Hz), and Tchirp is the chirp length (in seconds). 

• A better velocity (speed) resolution requires higher TX frequency or longer 
measurement time (longer chirp, or longer period). 

For example, a TX frequency of 5.8GHz and a chirp length of 10msec gives a radial 
velocity (speed) resolution of 2.6 meters/second: (3*108) / [2*(5.8*1010)*(10-3)] 
 
Directional of Arrival DoA (Angle of Arrival AoA) 
 

Inspired by human auditory system, Direction of Arrival (DoA) technique could be 
implemented in a radar or a localization system.  

• A person is able to determine the Direction of Arrival (DoA) of a sound by utilizing a 
three-stage process: 

- One’s ears act as acoustic sensors and receive the signal. 
- Because of the separation between the ears, each ear receives the signal with a 

different time delay. 
- The human brain, does a large number of calculations to correlate information and 

compute the location of the received sound. The human brain is capable of 
distinguishing between multiple signals that have different directions of arrival. 

 

• Electrical smart antenna systems work the same way using two (or more) antennas 
instead of two ears, and a digital signal processor instead of the human brain. 

 
Thus, based on the time delays due to the impinging signals onto the antenna elements, 
the digital signal processor computes the direction-of-arrival (DoA) of the signal-of-
interest (SOI), and then it adjusts the excitations (gains and phases of the signals) to 
produce a radiation pattern that focuses on the SOI while tuning-out any interferers or 
signals-not-of-interest (SNOI).  
This technique could be used for many applications as: localization, tracking, and gesture 
recognition. Also, rejecting interferers coming from unwanted directions, represents a 
major advantage for radar systems. 

• By exploiting the incident-angle-dependent magnitude and phase differences 
between the two antennas and applying signal processing algorithms, the 
directional-of-arrival DoA of an incident RF signal can be estimated. 
 



 
Fig. 12 - Direction of Arrival using an array with two antenna elements 

 

• Is assumed that the narrowband RF signals s(t) are generated by a source situated 
in the far-field of the two-elements array antenna, and the impinging signal on the 
antennas is approximately a uniform plane wave (wave-front).  

• The RF signals emitted by the source are parallel one to each other, and 
perpendicular to the wave-front plane.  

• With respect to the signal that goes to the antenna Ant1, the signal which goes to 

antenna Ant2 experience a time delay Δ𝜏 in seconds:  

 

Δ𝜏 = [d*sin(ϴ)] / c                                               (23) 

 
where: d is the distance between antennas (meters), c is the speed of light (wave 
speed in m/sec), and ϴ is the angle made by the wave-front plane and array axis. 

• Phase changes (Ф1 and Ф2) over the antennas are determined by the incoming 
angle of the RF signals made with the array axis.  

• If s(t) is an RF signal with carrier frequency fc = c/λ, then the time delay Δ𝜏 

corresponds to a phase shift ΔФ:  
 

ΔФ = Ф2 – Ф1 = [2*π*d*sin(ϴ)] / λ                             (24) 
 
where: λ is the wavelength of the RF signal (in meters).  

• If the element spacing is exactly d = λ/2, it can be further simplified as:     
                    

ΔФ = [π*sin(ϴ)]                                                  (25) 
 

• The approach of using only two antennas for finding directional-of-arrival (angle-
of-arrival) of the signals, can be used only for one-direction incoming signals. 

• When using only two antennas, the measurement could be noisy and ambiguous. 

• These issues can be solved using more than two antennas in the array.   
 
 
 
 



Estimation of Angle of Arrival (AoA) and Angle Resolution using Chirp Sequence 
 

• Was mentioned that a small change in the distance of the object Δd result in a phase 
change ω in the peak of the received range-FFT signal. 

 
                                                     ω = [4*Π*d*sin(ϴ)] / λ                                        (26) 
 

• Angle estimation requires at least two RX antennas. The differential distance (dual 
path) from the object to each antenna (d and d+Δd) result in a phase change ω in 
the received FFT peak signal, which is used to estimate the Angle of Arrival (AoA). 

 
 

                                                      ω = [2*Π*d*sin(ϴ)] / λ                                       (27) 
 
The two expressions of ω (26 and 27) are off by a factor of 2, is because (26) has a two-
way round-trip distance. 
 

• In the case that the transmitter sends a frame (block) of chirps, the received FFT 
signals, corresponding to each RX antenna, will have peaks in the same location on 
the frequency spectrum, but with differing phase. 

• The measured phase difference ω can be used to estimate the Angle of Arrival 
of the object. 

                                                          
From the relation between phase difference ω and angle of arrival ϴ, we find that this 
is not a linear relationship, because the sensitivity of sin(ϴ) to ϴ degrades as ϴ increases.                                                    

This is unlike the case of velocity (speed) 𝑣r where the phase difference ω is: 

 

                                                     ω = (4*Π*𝑣r*Tchirp) / λ                                         (28) 

 
 

• At ϴ=0°, the phase change ω is the most sensitive to changes in angle of arrival ϴ.  

• The sensitivity of ω to ϴ reduces as ϴ increases (becoming 0 at 90°).  

• Angle estimation is most accurate at ϴ close to 0° (broadside).  Hence, estimation 
of ϴ is more error prone as ϴ increases. 



 

 
 

• The maximum field of view (the maximum AoA ϴmax) that can be serviced by two 
antennas spaced at a distance d is: 
 
                                         ϴmax = [λ / (2*d)]                                                     (29) 
 
Resulting in the largest field of view of +/- 90° for spacing between antennas d = λ/2  
 

• Radar angular resolution is the minimum distance between two equally large 
targets at the same range (distance) which radar is able to distinguish and separate 
to each other. 
Angle resolution ϴres is given by: 
 
                                     ϴres = λ / [N*d*cos(ϴ)]                                               (30) 
 
where N is the number of the RX antennas (or the number of samples in the FFT), 
and d is the spacing between antennas. 
Larger antenna length (or bigger number of antennas) gives better angle resolution. 

• The same as the angle estimation accuracy, the angle resolution ϴres degrades 
as ϴ AoA increases (due to nonlinear nature of sin(ϴ).  

• In frequency spectrum, two objects are further apart at ϴ=0° and come closer to 
each other as ϴ increases. 
 
 
 
 
 
 
 
 
 
 

Estimation accuracy degrades as ϴ approaches 90° 

Angle estimation is most accurate at ϴ close to 0° (broadside) 
 



C-Band 5.6GHz FMCW Radar 
 
The core of the presented FMCW radar system is the push-push VCO (voltage-controlled 
oscillator), which has a good linearity over more than 800MHz sweep frequency range. 
 
Push-Push VCO - Schematic and Functionality 
 
 
 
 
 
 
 
 

 
 
 
 
 

Fig. 13 - 5.6GHz Push-Push VCO – VCO basic circuit          Fig. 14 - VCO with temperature compensated bias  

 
In this project, the 5.6GHz push-push VCO was built using two SiGe BFP620 transistors 
having transition frequency (fT) of 65GHz.  
 
More information about this Push-Push VCO can be find here: 
SiGe Push–Push VCO for Low-Power C-Band FMCW High-Resolution Radar 
Applications 
 
The sawtooth ramp generator was built using three BJT transistors followed by an OpAmp 
buffer (LM358), which provides a low output impedance to the Vtune line. 
The FMCW signal generated by the VCO goes to an emitter follower buffer (Q6) and later 
is amplified by the Q7 transistor. A Wilkinson splitter is used to distribute the signal to the 
power amplifier and also to the RX mixers. 
 
For making the 5.6GHz transmitter power amplifier few options are:  

An option is to build a 0.5W power amplifier using three SiGe BFP650 transistors, 
connected in parallel.  
 
 
 
 
 
 

 
Fig. 15 - 5.6GHz, 0.5W Power Amplifier   

 
The gain of this power amplifier is about 14dB, at +27dBm output power into a 50Ω load. 

https://www.aliexpress.com/item/4000583675909.html
https://ieeexplore.ieee.org/document/9525109
https://ieeexplore.ieee.org/document/9525109
https://www.aliexpress.com/item/4000861740559.html


Another option for the PA, is to use an external RF power amplifier, This external 
power amplifier was initially designed to boost the output power of the wireless remotes 
which control flying drones.  
The external power amplifier used in this project was designed with two SiGe-5004L 
power amplifier ICs connected in parallel with help of two printed Wilkinson combiners 
(see the picture below).  
In the frequency range 5GHz-6GHz, using constant envelope signals (as FMCW signal), 
the output power of this amplifier could be up to +33dBm (2W), depending by the input 
power.  
 
 
 
 
 
 
 
 

Fig. 16 - 5.8GHz 2W Power Amplifier made with two SiGe-5004L in parallel 
 

Receiver LNAs, Mixers, Splitter  
 
The FMCW signal from the VCO is amplified by the Q7 transistor and later, using a 
Wilkinson splitter, the signal is divided: one side to the power amplifier, and the other side 
to the mixers of the two receivers. Both receivers are identical, using active mixers IAM-
81008, followed by active low-pass filters at the IF output.  
The IAM-81008 active mixer have about 5dB gain at 5.6GHz. Having an active mixer, and 
if the radar system uses an external power amplifier with more than 1W output power, 
there is not necessary to use an LNA (low noise amplifier) in front of the receiver mixer.  
If lower TX power is used, the receiver may need to use an LNA in front of the RX mixer:  
 
 
 
 
 
 
 

Fig. 17 - 5.6GHz LNA, 16dB Gain and 0.5dB noise figure 

 
At the IF output of the RX mixer, the baseband signal is low-pass filtered and amplified by 
MC33078 operational amplifiers which has high-gain bandwidth product of 16MHz. 
 
To get good power rails isolation between the two receivers, each circuit block has its own 
DC regulators. Also, the VCO has its own RF shield, and the PA the same. 
 
 
 

https://www.aliexpress.com/item/32836970896.html
https://www.aliexpress.com/item/32841223831.html
https://www.aliexpress.com/item/32352192194.html
https://www.aliexpress.com/item/33018108532.html


Horn Antennas 
 

The C-band FMCW radar uses for measurements three pyramidal horn antennas, 
one antenna at the output of the transmitter and two antennas in front of the receivers.   

The horn antennas were built using 0.8mm double-side copper plated PCB board, 
material which is easy to cut and solder. The interior edges of the horn antennas were 
soldered, when the exterior edges were united using copper tape.  
However, only the interior edges need to be soldered. 
A typical horn antenna design comprises three parts:  
 

1. The feed port of the horn antenna.  
- Horn antennas are typically excited using a connector probe or a waveguide 

port.  
In this project, the designed pyramidal horn antenna uses as the feed port an 
SMA connector from whom center pin is soldered an RF probe, having 11mm 
length and 2.5mm thickness. 

2. The waveguide mode transformer. 
- The horn antennas made for this project are based on WR159 rectangular 

waveguide type, which covers 4.64GHz to 7.05GHz band. 
- For rectangular waveguides, the dominant mode is TE10. 

The TE10 means that during propagation through the waveguide the electric 
field is perpendicular to the direction of the propagation. 

3. The radiating aperture of the horn antenna.  
- The excited wavefront propagates along the rectangular waveguide and 

radiating outward via the pyramidal radiating aperture. 
- The horn antenna may be considered as an impedance match between the 

waveguide feeder and free space (which has an impedance of 377 ohms), by 
having a flared end to the waveguide.  
By matching the impedance of the guide to that of free space or vice versa, it 
helps suppress signals travelling via unwanted modes in the waveguide from 
being radiated and it provides significant level of directivity and gain. 

- A pyramidal horn antenna is constructed by extending the E-plane and H-
plane of a rectangular waveguide, and its radiation characteristics are 
essentially a combination of the characteristics of the E-plane and H-plane of 
the horn antenna. 

 
 
 
 
 
 
 

 
 

Fig. 18 - Pyramidal Horn Antenna E-field and H-field directions 

 

https://www.pasternack.com/wr-159-waveguides-category.aspx


The Top, Bottom and the Sides views of the horn antenna (4.64GHz-7.05GHz) are 
depicted in the figure below, and shows the location of the feed port, the dimensions of 
the RF probe, and the outer dimensions of the antenna (all dimensions are in mm). 
 
The VSWR of the horn antenna in the frequency range 5GHz to 6GHz is better than 1.2:1 

 
 
 
 
 
 
 
 
 

Fig. 19 

For the given dimensions in figures above, the gain of the pyramidal horn antenna is 12dB, 
the horizontal 3dB beamwidth is 50°, and the vertical 3dB beamwidth is 62°.  
The isolation between two horn antennas placed side-by-side in horizontal plane, is better 
than 70dB.  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 20 - Prototype of the 5.6GHz FMCW Radar using Pyramidal Horn Antennas 

 
RCS (Radar Cross-Section) 
 
RCS (radar cross-section) is the electromagnetic signature of an object. It represents the 
amount of energy reflected by the object when it is illuminated by a radar.  

- The more detectable the object is, the higher the RCS. 
 
Measurement of an object’s RCS takes place at a radar reflectivity range. It can be an 
outdoor far-field range, or the measurements can be performed in an anechoic chamber.   
 



Factors that influence Radar-Cross-Section RCS are: 
- the material with which the target is made. 
- the size of the target relative to the wavelength of the radar signal. 
- the absolute size of the target. 
- the incident angle (angle at which the radar beam hits a particular portion of 

the target, which depends upon the shape of the target and its orientation to 
the radar source). 

- the reflected angle (angle at which the reflected beam leaves the part of the 
target hit; it depends upon incident angle). 

- the polarization of the transmitted and the received radiation with respect to 
the orientation of the target. 

 
Corner Reflector 
 
To measure the performances of the FMCW radar were built two trihedral corner reflectors 
using aluminum sheet, with dimension a = 30cm. 
 
 
 
 
 
 

                                              Fig. 21 - Corner Reflectors    
 

• Corner Reflector is a structure that is used as a radar target, for measurements or 
calibration of the radar system.  

• Corner Reflectors are used for many reasons: they have very high radar-cross-
section (RCS) for a small size, the high RCS is maintained over a wide incidence 
angle, and an exact and stable solution is known for their RCS. 

The cross-section area σ in m2 for trihedral corner reflectors using triangular shapes 
(as the one presented in the figures above), is given by: 
 

σ = (4πa4)/(3λ2)                                         (26) 
   

• For a corner reflector with dimension “a” of 30cm (0.3m), at 6GHz (λ=5cm=0.05m), 
we get a cross-section area of 13.5m2.  

- Therefore, in a radar system, for a target having the visual area of 0.77m2, we 
get a radar echo signal as would have been reflected by a 13.5m2 target. 

• To get a high cross-section area from a corner reflector, the dimension “a” should 
be many times greater than the wavelength. 

• Should be noted that according to the cross-section equation (26), if doubling the 
dimension “a” of the corner reflector, the cross-section area will be 16 times greater. 



Using Matlab, for a stationary corner reflector placed at various distances and angles from 
the source (2.1m/-35⁰ and 3.3m/20⁰), was analyzed the received signal reflected from the 
target. See the picture below for the targets positions.  
Reflections due to grating lobes of the two receiving horn antennas (because distance 
between them is > λ/2) is also shown in the picture. 

 
 

Fig. 22 - Range-angle representation of two targets placed at 2.1m/-35⁰ respectively at 3.3m/20⁰  

 
Schematic of the C-Band, 5.6GHz, FMCW Radar 

 
Fig. 23



References: 
 

1. Automotive Radar - Chirp Analysis with R&S RTP Oscilloscope – R&S 
2. Small and Short-Range Radar Systems – Charvat 
3. RF and Microwave Transistor Oscillator Design – Grebennikov 
4. Antenna Theory - Analysis and Design – Balanis 
5. Introduction to mmWave Sensing: FMCW Radars – S.Rao – Texas Instruments 

 
 
 
 
 
 


