

THE HQ-145A SERIES OF COMMUNICATIONS RECEIVERS

INSTRUCTION AND SERVICE INFORMATION

In order to receive the full unconditional 90day warranty against defective material and workmanship in this receiver, the warranty card must be filled out and mailed within two weeks of purchase.

Please refer to serial number of warranty in correspondence.

THE HAMMARLUND MANUFACTURING CO. 73-88 HAMMARLUND DRIVE : : MARS HILL, NORTH CAROLINA

Figure 1. The HQ-145A Communications Receiver

TUBE COMPLEMENT

SYMBOL	TYPE	TUBE	FUNCTION
V1	6BZ6	Pentode	RF Amplifier
V2	6BE6	Pentagrid Converter	lst Mixer
V3	6BE6	Pentagrid Converter	Converter or 455 Kcs IF Amplifier
V4	6BA6	Pentode	455 Kcs IF Amplifier
V 5	6BA6	Pentode	455 Kcs IF Amplifier
V6	6AL5	Double Diode	Detector, Noise Limiter
V7	12AX7	Double Triode	455 Kcs BFO, Audio Amplifier
V8	6AQ5	Pentode	Audio Power Output
V9	6C4	Triode	High Frequency Oscillator
V10	OB2	Gas Filled Diode	Voltage Regulator
		DIODE COMPLEMEN	т

SYMBOL	TYPE	DIODE	FUNCTION
CR2	CER72C	Silicon	Rectifie r
CR3	CER72C	Silicon	Rectifier

INTRODUCTION

The Hammarlund HQ-145A series multipurpose continuous coverage communications receiver incorporates many new circuit innovations in addition to the well known Hammarlund crystal filter and series noise limiter circuits. It will provide years of top performance with a minimum of maintenance.

The HQ-145A series receivers has a selfcontained power supply and a universal transformer capable of operation from a 117 volt 60 Cp/s or 220/230 volt 50/60 Cp/s source, provided the proper adapter plug (P4) is installed. It is a superheterodyne receiver containing ten tubes and two silicon diodes which provides continuous coverage from a 540 Kc/s to 30 Mc/s. Dual IF conversion is employed on the 10 to 30 Mc/s range including the 20, 15 and 10 meter amateur bands. The HQ-145AC incorporates a telechron automatic clock timer in its design. The HQ-145AX provides an 11 position fixed frequency crystal oscillator which may be factory installed or when ordered as a field installation kit is furnished with complete installation instructions. This crystal oscillator is designed to be installed in the panel space provided for the 24 hour clock timer.

Electrical bandspread tuning is provided with direct calibration every 10 Kcs on the 80, 40, and 20 meter bands; every 20 Kcs on the 15 meter band and every 50 Kcs on the 10 meter band. It addition an arbitrary bandspread logging scale is provided for use throughout the tuning range of the receiver.

The 100 Kcs crystal calibrator (optional accessory) provides marker signals at every 100 Kcs on all bands for checking dial calibration accuracy. A tuned RF stage with the addition of an antenna trimmer assures maximum sensitivity and a high signal to noise ratio for outstanding reception of weak and distant signals. A manual sensitivity (RF gain) control prevents the receiver from overloading on strong signals.

The well known Hammerlund crystal filter provides optimum selectivity for high rejection of closely spaced interfering signals.

The HQ-145A series of receivers are equipped with an unusually stable beat frequency oscillator which provides the operator of the receiver with a range of audio tones for excellent reception of code (CW) signals, as well as (SSB) single side band signals.

One special feature of the HQ-145A series is a razor sharp adjustable slot filter to eliminate co-channel interference. A single knob controls the position of the "hole" in the IF passband and provides up to 40 db attenuation of the unwanted signals over a range of 10 Kcs. In addition, the slot depth control may be used to obtain an additional 20 db rejection at any single frequency.

Accurate reports of signal strength on AM reception are obtained with the aid of the "S" meter for that "on the nose" tuning. A send-receive switch is provided to silence the receiver while transmitting.

The receiver possesses the Auto Response feature which automatically narrows and widens the frequency range of the audio output, according to the gain required. This feature permits higher fidelity reception on stronger signals, while providing the sharp cut-off required in receiving communications under adverse conditions. A second advantage of the Hammarlund Auto-Response is the rapid damping of the audio power in the speaker voice coil which greatly minimizes undesirable speaker "hangover". The receiver may be used with either speaker or headphones. A-C hum is made inaudible by means of adequate power supply filtering.

An accessory socket plus a systems socket is permanently installed on the rear panel. The accessory socket may be used to power most 6 and 2 meter converters. The systems socket will be found convenient when the HQ-145A series of receiver is employed in conjunction with a transmitter since all of the necessary VOX anti-trip and/or relay connections are available from this socket. This also provides a rapid disconnect without the need of tools once the installation has been completed properly.

The 3.2 ohms and 500 ohms output terminations on the rear panel are provided for voice coil or line operation. The 500 ohm line termination will be found very advantageous for phone patch and improved anti-trip operation of most VOX circuits.

Large comfortable controls in logical groupings are provided for the greatest of operating ease. The new futuristic front panel is clearly marked to permit full attention to the operation at hand.

The HQ-145A series receivers were designed with you in mind. You will have many hours of pleasure in operating this truly fine communications instrument.

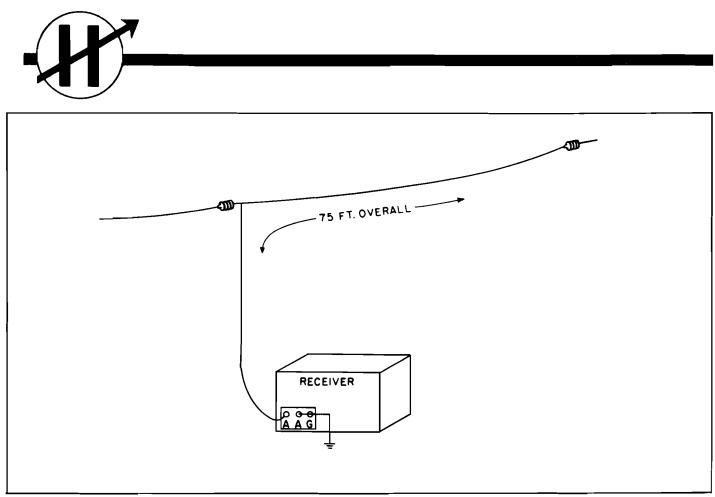


Figure 2. Installation of Single Wire Antenna

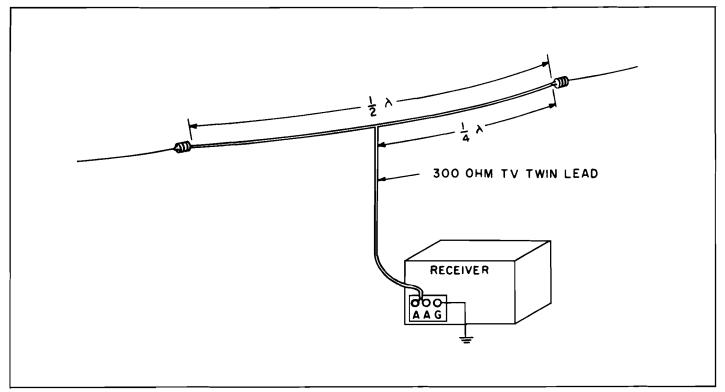


Figure 3. Installation of Folded Dipole Antenna

UNPACKING

Unpack the receiver carefully. Make sure the tubes, associated tube shields and pilot lamps are in place.

SPEAKER CONNECTION

Connect a 3.2 ohm permanent magnet speaker (Hammarlund S-200 Speaker) to the two terminals marked GND and 3.2 ohms on the rear of the chassis. (See Figure 4.) For best performance do not place speaker on top of receiver cabinet. If the unit is to be operated remotely over a telephone line connect the line to the 500 ohm terminals. Note that a jack is provided in the lower right corner of the front of the receiver for headphones. The loudspeaker is automatically disconnected when the phone plug is inserted in this jack.

POWER CONNECTIONS

Before inserting power cord into power outlet, make certain power source is of proper voltage and frequency. (Refer to paragraph two of INTRODUCTION.)

INSTALLING ANTENNA

The HQ-145A is designed to operate with a single wire or a balanced type antenna. The front panel antenna trimmer control(Figure 5) permits a good match to most antenna systems of 50 to 600 ohms.

For general coverage, single wire antenna of 20 to 50 feet length will provide surprisingly good reception. A long single wire outdoor antenna, such as shown in Figure 2, will generally provide entirely satisfactory performance. This wire may be 50 to 150 feet long.

For best reception, the antenna should be isolated as much as possible from neighboring objects and at right angles to power lines or busy highways so as to minimize possible interference pickup.

Optimum performance on a particular amateur band or other narrow tuning range will be obtained by using a tuned half-wave dipole or folded dipole fed with 300 ohm transmission line or other suitable lead-in, as shown in Figure 3.

To tune the one-half wave length dipole, the following formula for the length of the antenna may be used:

Length (feet) =
$$\frac{468}{\text{Freq. (MCS)}}$$

Each half (1/4 wave length) is half the length found from the above formula.

A good ground, although not always necessary, will generally aid in reception and reduce stray line hum. Reversal of polarity of power cord plug may possibly further reduce line hum in some locations.

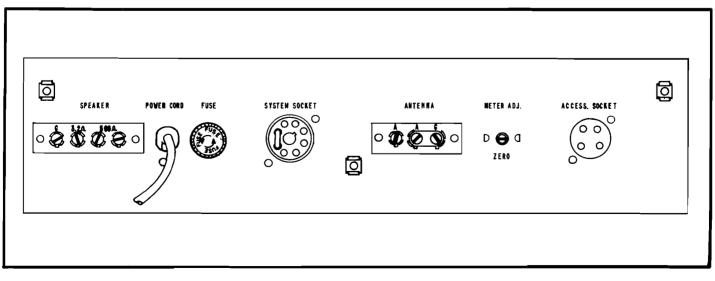


Figure 4. Connection Points at Rear of Chassis

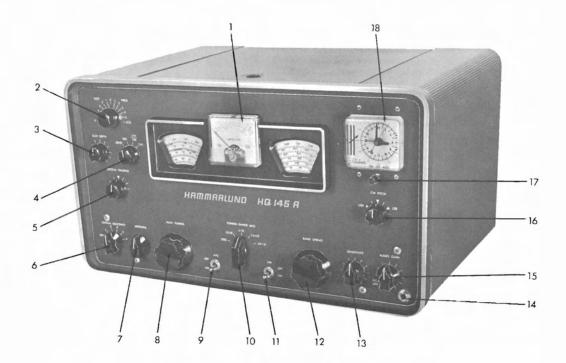


Figure 5. Location of Front Panel Controls

- 1. "S" Meter Carrier Level
- 2. Slot Frequency Control
- 3. Slot Depth Control
- Function Switch (Send-Receive-CW/SSB Calibrator)
- 5. Crystal Phasing Control
- 6. Bandwidth Selector
- 7. Antenna Trimmer
- 8. Main Tuning Control
- 9. AVC ON-OFF Switch
- Tuning Range Switch (Band Selector)

- 11. Noise Limiter ON-OFF Switch
- 12. Bandspread Tuning Control
- 13. RF Sensitivity Control
- Phone Jack (Output for Headphone Operation)
- 15. Audio Frequency Gain Control
- Beat Frequency Oscillator Control (CW Pitch)
- 17. Timer Switch (AC Models Only)
- Telechron Automatic Clock Timer (AC Models Only)

MAIN TUNING

The Main Tuning dial provides continuous coverage throughout the entire range of the receiver. In order for the Main Dial calibration to be accurate, the bandspread dial scale must be set at the indicated vertical marking which is located at the extreme clockwise end of its dial scale.

BAND SPREAD TUNING

The Band Spread Dial scale provides expanded dial scale coverage on the 80, 40, 20, 15 and 10 meter amateur bands. To use the Band Spread Dial, set the Main Dial scale to the highest indicated frequency of the amateur band in which operation is desired. The amateur bands are prominently shown on the Main Dial scale by means of the boxed off areas.

20 METER BAND SPREAD POSITION

A special 20 Meter Band Spread position is incorporated in the Tuning Range switch to provide the optimum dial scale spread on this band. To obtain the proper dial calibration on the 20 Meter bandspread dial, the Tuning Range switch must indicate <u>20 BS</u>. The adjustment of the Main Tuning dial for bandspread operation is the same as previously mentioned. (The BS dial calibration is inaccurate on the 15 and 10 Meter bands when the Tuning Range switch indicates 20 BS).

100 KCS CRYSTAL CALIBRATOR (OPTIONAL ACCESSORY)

The 100 Kcs crystal calibrator provides 100 Kcs check points for precise calibration throughout the range covered by the receiver. The 100 Kcs crystal controlled oscillator has been set at the factory with sufficient accuracy for all practical purposes.

For dial calibration checking, the Send-Receive-CW/SSB-Calibrate switch is set to CAL position and all other controls should be set as listed under Code or SSB Reception.

SUGGESTED TUNING PROCEDURE

First set the bandspread dial at the high frequency end of the particular amateur band. Next set the main tuning dial to the high frequency end of the band. If a 100 Kcs crystal calibrator is available, the Main tuning dial should be carefully adjusted, plus or minus the high frequency band edge marker until the 100 Kcs calibrator is heard. Care must be taken that the proper 100 Kcs marker is employed in order to prevent setting the main tuning dial 100 Kcs higher or lower than the band edge. Next rotate the bandspread dial to the 100 Kcs marker nearest to the center of the bandspread tuning range. It will undoubtedly be found that upon doing this, the 100 Kcs marker will be plus or minus of the exact frequency. The bandspread dial is therefore set to the exact 100 Kcs marking, and the main tuning dial is then very carefully adjusted until whatever error existed in the bandspread dial reading has been corrected. Once this condition has been obtained, the main tuning dial should be left alone and all tuning of the amateur bands accomplished with the bandspread tuning dial. Using this procedure of setting the bandspread dial near the center of its tuning range will halve the frequency error that may result when either band edge alignment is employed.

In the event that the 100 Kcs crystal calibrator is not available, a signal of known frequency, such as harmonics from the crystal oscillator in your transmitter, should be set up accurately on the BANDSPREAD tuning dial and the MAIN tuning dial rotated very carefully, plus or minus, from the high frequency band edge marker until the signal of known frequency reads correctly on the bandspread dial. For best accuracy of bandspread dial calibration, the known frequency should preferably be near the center of the bandspread dial tuning range, since, here again, this will result in halving the possible error that may result by setting up the bandspread dial to a known frequency at or near either of the band edges.

Without a 100 Kcs crystal calibrator or a known frequency, setting up the main tuning dial to the high frequency band edge marker may result in the bandspread tuning dial being off by as much as 100 Kcs or more. If the above procedure is followed, the bandspread tuning dial will usually read to within approximately 15 Kcs or better of the exact frequency.

TELECHRON AUTOMATIC TIMER (OPTIONAL ACCESSORY)

If your receiver is equipped with the builtin Telechron Automatic Clock-Timer, the following instructions should be noted:

Every radio-frequency device is stable only at pre-determined operating temperatures. In order to eliminate waiting for the receiver to warmup to operating temperature, the Telechron Timer automatically turns on the receiver ahead of anticipated operating time. This is accomplished by setting the hand of the timer (small knob at rear of receiver) to approximately one-half hour before operating time. The front panel control under Timer is then set to "Auto" position. The function switch is set to REC. The receiver is then automatically turned on at the desired time.

The clock hands are set by the rear knob. "Push in" and turn the knob to set the switch timing hand and "pull out" and turn the knob to set the clock hands. The front switch is set to AUTO and the function switch is set to REC. when it is desired to use the automatic clock switch for pre-warming the receiver before operation or for use as an alarm to turn the receiver on to a pre-tuned station. To use the function switch normally, the clock switch should be left in the ON position.

The clock will continue to run as long as the receiver line cord is connected to the power outlet, and is extremely useful for checking signin periods and schedules.

If your receiver is not equipped with the telechron automatic clock timer and you decide to have this accessory added, the clock kit, which contains an internally wired program plug may be purchased from your local Hammarlund dealer.

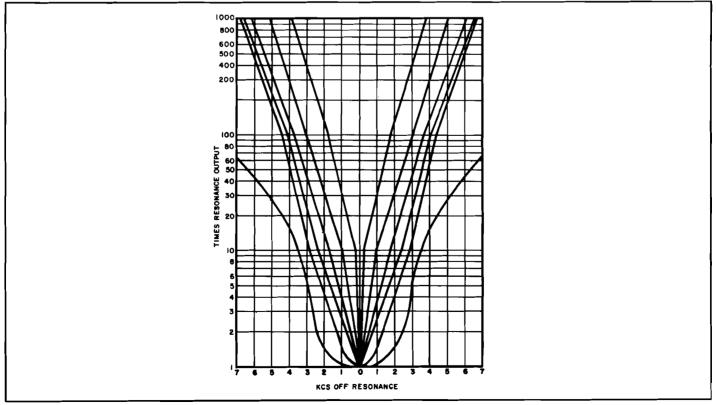


Figure 6. Selectivity Curves

OPERATION

AM RECEPTION

For AM reception the position of the controls normally should be as follows: Send-Receive-CW/SSB-Cal

Switch Receive Selectivity Switch *Off *****See detailed Crystal Phasing instructions Slot Frequency ***Clockwise Slot Depth ****See detailed instructions for use of slot filter Main Tuning Control Tune for the highest "S" Meter reading Band Spread Control Extreme Clockwise marking Tuning Range Switch Set to desired frequency range Antenna Trimmer Tune for the highest "S" meter reading AVC ON-OFF Switch ON Noise Limiter Switch OFF RF (Sensitivity) Control **Fully Clockwise *****Adjust to AF (Gain) Control desired level Timer Switch ON (AC Models only)

Beat Frequency Oscillator Triangular Marker * To obtain Maximum fidelity in AM Reception, the widest bandwidth is normally used. However, under conditions of severe interference from spurious signals or atmospheric noise, the bandwidth is reduced to improve intelligibility although some sacrifice of fidelity results. Adjust crystal selectivity to suit reception conditions.

** For normal AM reception, the RF gain control is rotated fully clockwise. The "S" meter calibration holds only when the Manual-AVC switch is on AVC. In the presence of extremely strong signals, the RF (Sensitivity) Control may be reduced to limit meter swing.

*** The Slot Frequency control provides an extremely sharp adjustable slot or hole in the selectivity curve (See Figure 7). It is normally located outside of the passband of the 455 Kcs IF Amplifier system. It is brought into the passband for the purpose of eliminating interference from heterodyne signals on AM and monkey chatter on SSB. On CW Reception, the Slot Filter will materially aid in reducing or eliminating adjacent or co-channel interference.

CAUTION

When tuning the receiver across any band, make certain that the Slot Frequency control is at the 5 Kcs position not on "0".

Whenever the receiver is being tuned for normal reception be sure to first rotate the slot Frequency control to the extreme clockwise or counter clockwise position. In other words, never leave the Slot Frequency control at or near the zero setting. If this procedure is not followed it is obvious that the center of the passband will be slotted out, some cases this being made quite obvious by producing 2 spot tuning or 2 peak "S" meter readings. **** The Slot Depth control is actually a very gradual vernier adjustment. In view of this its effect will not be very noticeable unless the proper procedure is employed. The suggested procedure is as follows:

Tune in a broadcast signal on the broadcast band or any other strong constant carrier of similar nature. After tuning in the constant carrier, peaking the "S" meter, and taking the above precautions, rotate the Slot Frequency control. It will be noticed that upon approaching the zero setting, the "S" meter reading will be affected. A very definite null or minimum "S" meter reading will be obtained with the Slot Frequency control adjusted at or near zero. Observe this "S" meter reading. With the Slot Frequency control set at the minimum "S" meter reading position, the Slot Depth control should be rotated very slowly throughout its range, observing the "S" meter. It will be found that at one particular spot throughout the range of the Slot Depth control a further reduction in the "S" meter reading will be obtained. A very slight readjustment of the Slot Frequency may now result in a further reduction of the "S" meter reading. Once this setting has been obtained, the Slot Depth control may be left permanently in this position, and all future Slot Filter adjustments made by the Slot Frequency control only.

A periodic check of the slot depth control setting may be advisable.

***** A feature of the audio system is the variable negative feedback employed. Maximum feedback is provided at low settings of the Audio Gain Control for maximum quality reception of strong signals. As the Audio Gain Control is increased, the feedback decreases to provide additional selectivity by the audio system for reception of weak signals. This results in an increased signal to noise ratio. A further advantage is the critical damping of the speaker for the elimination of speaker "hangover". This upgrades the reception of speech and decreases receiver output noise. Another advantage is the reduction of distortion at low settings of the Audio Gain Control. ****** The crystal phasing control is operative only when the selectivity control is in position l thru 5. This control provides a "notch" on one side of the IF passband of the receiver. This rejection notch can sometimes be employed to reduce interference from an undesired phone signal which is very close in frequency, to a desired phone signal. The receiver must be tuned so that the carrier frequency of the undesired signal falls in the rejection notch. The modulated sidebands of the undesired signal still will come through, but the carrier hetrodyne will be effectively eliminated and interference greatly reduced.

CODE OR SINGLE SIDEBAND RECEPTION

For CW Code reception the position of the controls normally should be as follows:

Send-Receive-CW/SSB- Cal Switch	CW/SSB	AVC ON-OFF Switch	OFF
		Noise Limiter Switch	OFF
Selectivity	*OFF	RF (Sensitivity) Control	Adjust to desired
Crystal Phasing	****See Detailed Instructions		output level
Slot Frequency	Clockwise	AF (Gain) Control	3/4 Clockwise
Slot Depth	See AM Rec.	Timer Switch	ON (AC Model Only)
Main Tuning Control	Tune for loudest signal	Beat Frequency Oscillator	***Tune Signal to zero beat with knob
Band Spread Control	**Tune for loudest signal, if used		pointing to triang- ular marking, then turn off zero beat
Tuning Range Switch	Set to desired fre- quency range		in either direction for desired tone on
Antenna Trimmer	Tune for the loud- est signal		CW or best intelli- gibility on Single Sidebands Reception.

* Under conditions of severe interference, increase the selectivity of the receiver by turning knob to a higher position.

** For Single Side Band Reception adjust band spread knob for the loudest signal; then use the BFO knob for "zeroing in" to the exact frequency, or for best speech intelligibility.

*** The CW Pitch Control markings USB and LSB indicate the position of the Beat Frequency Oscillator with respect to the center of the IF passband.

When a Single Sideband signal is received, the CW Pitch Knob must be turned in the correct direction so that the re-inserted carrier (provided by the BFO) has the proper phase relationship to the sideband signal. For upper sideband signal reception, the CW Pitch knob must be set to the USB side for intelligible reception. For lower sideband reception, the CW Pitch knob must be set to the LSB side for intelligible reception. *** The RF (sensitivity) control should be advanced the least amount required for the desired audio output. The use of a minimum sensitivity control setting insures that no overload distortion occurs in the receiver for single sideband reception.

**** The crystal phasing control is operative only when the selectivity control is in position 1 thru 5. The phasing control is a differential type variable capacitor which permits precise adjustment of the crystal selectivity characteristic for extremely high attentuation of the undesired frequency. This control provides a "notch" on one side of the IF passband of the receiver. This is called the "rejection notch," and can be utilized virtually to eliminate the heterodyne image or repeat tuning of CW signals. The CW pitch can be so adjusted and the phasing control so adjusted that the desired beat note is of such a pitch that the image (the same audio note on the other side of zero beat) falls in the "rejection notch" and is inaudible.

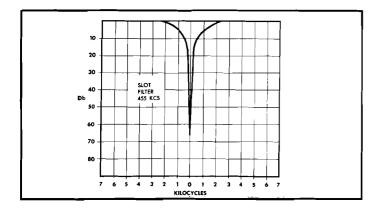


Figure 7. Slot Filter Response Curve

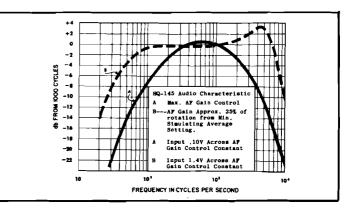
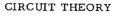



Figure 8. Auto Response Curve

The HQ-145A superheterodyne communications receiver employs double conversion on all signals above 10 megacycles. This receiver provides continuous coverage of all signals between the range of 540 kilocycles and 30 megacycles. Eleven tubes are used including the voltage regulator and 100 Kcs Crystal Calibrator (optional accessory). The circuitry of the receiver includes an adjustable IF bandwidth selector (crystal filter), a crystal phasing control, a slot frequency and depth control, a series noise limiter and special band spread ranges for the 80, 40, 20, 15 and 10 meter amateur radio bands.

PRE-SELECTION

The antenna input coupling and RF amplifier stage provide the necessary pre-selection and gain for high performance and rejection of undesired signals. The high signal level at the lst mixer grid, V2, contributes to a favorable signal-to-noise ratio.

Both grid and plate circuits of the RF stage are tuned (except plate circuit on .54 - 1.6 Mcs Band); individual tuning coils are selected for each band.

The antenna compensation capacitor, adjustable from the front panel, permits the receiver to be resonated for optimum performance with the particular antenna in use.

CONVERTER STAGE

A high degree of oscillator stability is attained by the use of a separate mixer (6BE6) V2, and an independent oscillator (6C4) V9.

The output signal from the RF amplifier Vl is heterodyned with the output of the local high frequency oscillator V9 and electronically combined within the mixer tube V2. On the .54 to 1.6 Mcs, 1.6 to 4.0 Mcs, and 4.0 to 10.0 Mcs bands the local oscillator is located 455 Kcs above the signal frequency. On the 10.0 to 30.0 Mcs and the 20 meter bandspread positions the local HF oscillator is located at 3035 Kcs above the signal frequency.

When operating on 10.0 to 30.0 Mcs and the 20, 15 and 10 meter band spread positions, the difference frequency of 3035 Kcs is heterodyned with the output of the 2580 Kcs crystal controlled

oscillator and electronically combined in the converter tube V3 (6BE6), to produce 455 Kcs, 2nd IF. When the band Selector switch indicates .54 - 1.6 Mcs, 1.6 - 4.0 Mcs, or 4.0 - 10.0 Mcs, the crystal oscillator section of the converter tube ceases to oscillate, and the converter becomes a regular 455 Kcs IF amplifier.

Low-loss tube sockets, low-loss phenolic insulation, temperature compensating capacitors, and stable coaxial trimmers all contribute to the excellent oscillator's stability. Additional frequency stability is attained by applying a regulated voltage to the oscillator circuit, and by the rugged constructional design of the entire HF oscillator section.

455 KCS IF AMPLIFIER

The output of the second conversion stage V3 is fed into two stages of 455 Kcs IF amplification. The interstage coupling network to the first tube contains the well known Hammarlund 455 Kcs Crystal Filter and phasing network.

The Crystal Selectivity switch provides six different bandwidths which enable the operator to successfully receive signals under the most severe conditions of interference due to atmospheric or man made noises. The six position Selectivity switch includes an Off position (highest fidelity) and five progressively increasing selective bandwidths as shown in Figure 5.

Switch positions Off, 1, 2, and 3 are recommended for phone or single sideband reception. Positions 4, and 5 are recommended for reliable CW or code reception. The phasing capacitor C16 may be adjusted to provide additional rejection to very strong, closely spaced, interfering signals.

The output circuit of the first 455 Kcs IF amplifier consists of two IF transformers T9 and T10 which are interconnected by means of a network of resistors, capacitors, and coils comprising the Slot Filter section. This low-impedance network forms a balanced bridge arrangement known as a Bifilar "T" trap. The slot filter inductor L3 and slot tuning capacitor C22 (with capacitors C20, and C21) form a tuned circuit which presents

a very high impedance to signals passing through at the resonant frequency (See Figure 7). Resistive balance is controlled by the Slot Depth Potentiometer R21.

DETECTOR AND NOISE LIMITER

One section of the 6AL5 tube, V6, is used for the second detector and AVC system. This system produces a minimum of distortion.

The other half of V6 operates as a series, self=adjusting noise limiter. It will reduce automobile ignition and other types of impulse noise to a minimum. Intelligibility is not affected by the noise limiter, although it may be switched off if desired.

AVC SYSTEM

Automatic Volume Control minimizes fading and signal strength variations by controlling the gain of the RF stage VI and IF stage V4. As a result, a comfortable and constant level of audio is maintained.

AUDIO AMPLIFIER

The first audio stage is a resistance coupled voltage amplifier employing one section of the 12AX7 (V7A). The audio output stage is a 6AQ5 beam power amplifier (V8) providing an undistorted output level of at least one watt.

A feature of the audio system is the variable negative feedback employed (See Auto-Response Curve, Figure 8). Maximum feedback is provided at low settings of the AUDIO GAIN control for the fine quality reception of local broadcast and strong short wave stations. As the AUDIO GAIN control is increased, the feedback decreases, so that on reception of weak signals additional selectivity is provided by the audio section. This results in an increased signal-to-noise ratio. A further advantage is the critical damping of the speaker for elimination of speaker "hangover". This upgrades the reception of speech and music and decreases the noise output of the receiver. Another advantage is the reduction of distortion at lower settings of the AUDIO GAIN control.

"S" METER (CARRIER LEVEL)

The "S", or Tuning, Meter is provided to assist in tuning and to give an indication of

relative signal strength. Because the meter readings are proportional to AVC voltage, it is operative only in the Receive Position with AVC "ON".

The meter, which is calibrated to 40 db over S-9, is factory adjusted so that a signal input of approximately 50 microvolts gives a reading of S-9. Each "S" unit indicates a 6 db increase, equivalent to doubling signal strength. Should meter readjustment be necessary:

- With receiver off, mechanically adjust meter pointer to zero with the aid of a small screw-driver.
- Turn power on, set function switch to REC., and Sensitivity control to MAX.
- Allow the receiver to warm up for at least 15 minutes.
- With AVC ON, and the Antenna Terminals shorted, turn Zero Adjust potentiometer R24 until meter pointer indicates "0".

BEAT FREQUENCY OSCILLATOR

The Beat Frequency Oscillator control L8 varies the tuning of the 455 Kcs BF0 (1/2 of 12AX7-V7B) over a range from zero beat to plus or minus 2 Kcs. The BFO is connected in an ultra stable modified Colpitts Oscillator Circuit. The high C to L ratio tuned circuit with the addition of the temperature compensating capacitor C56 substantially contribute to the outstanding performance of this section of the receiver.

CRYSTAL CALIBRATOR (OPTIONAL ACCESSORY)

A 6BZ6 vacuum tube, a hermetically sealed quality quartz crystal unit, and associated components form a highly stable 100 Kcs crystal-controlled oscillator to provide calibrating markers at 100 Kcs intervals throughout the range of the receiver. A ceramic trimmer capacitor located on the calibrator assembly is provided for accurately adjusting the oscillator frequency to zero beat with any primary frequency stand ard such as "WWV".

SERVICE AND ALIGNMENT PROCEDURE

NOTE

Before servicing this receiver, disconnect the unit from the power source and remove all lead wires attached to the terminal connections located at the rear of the chassis apron. Carefully turn the receiver on its front panel and rest the unit on top of smooth clean surface (preferably a soft cloth). Remove the three No. 10 Hexagon head machine screws which fasten the chassis to the cabinet at the rear skirt. Remove the knob from the clock adjustment shaft if the receiver is equipped with a clock assembly. Lift the cabinet straight up and off the chassis. To re-assemble reverse this procedure.

RF AND IF ALIGNMENT

Two non-metallic alignment tools are required for the complete alignment:

General Cement Co. No. 5097 or equal General Cement Co. No. 8282 or equal

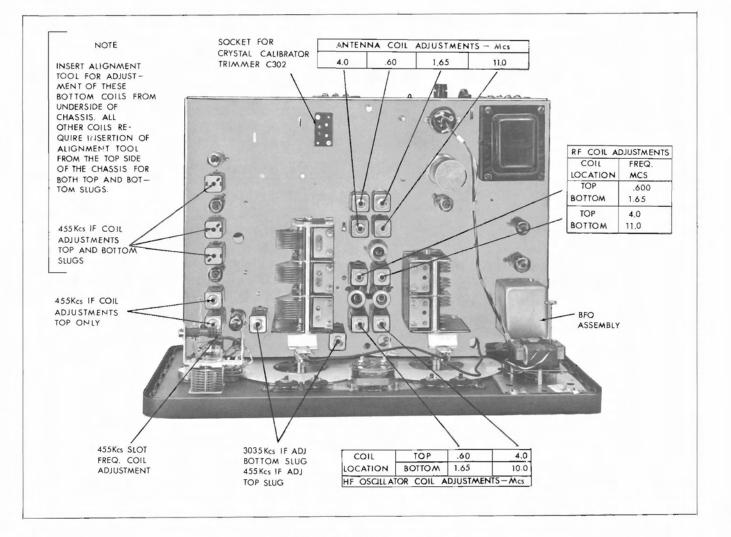


Figure 9. Top View of Chassis

Unless otherwise specified, the front panel controls shall be positioned as follows for the complete alignment of the receiver:

> Send-Receive-CW/ SSB-Cal Switch Selectivity Switch

Crystal Phasing

Slot Frequency Slot Depth Main Tuning Control Band Spread Control

Tuning Range Switch

Receive Off Triangular Marker (Mid-position) Clockwise Clockwise 4.0 Mcs Extreme Clockwise Marking 1.6 - 4.0 Mcs Antenna Trimmer AVC ON-OFF Switch Noise Limiter Switch RF (Sensitivity) Control

AF (Gain) Control Timer Switch Beat Frequency Oscillator Control Mid-position OFF OFF Adjust to prevent overloading Minimum Gain On (AC Models only) Triangular Marker (Mid-position)

NOTE

The receiver should be warmed up for a period of at least 1/2 hour before proceeding with the complete alignment.

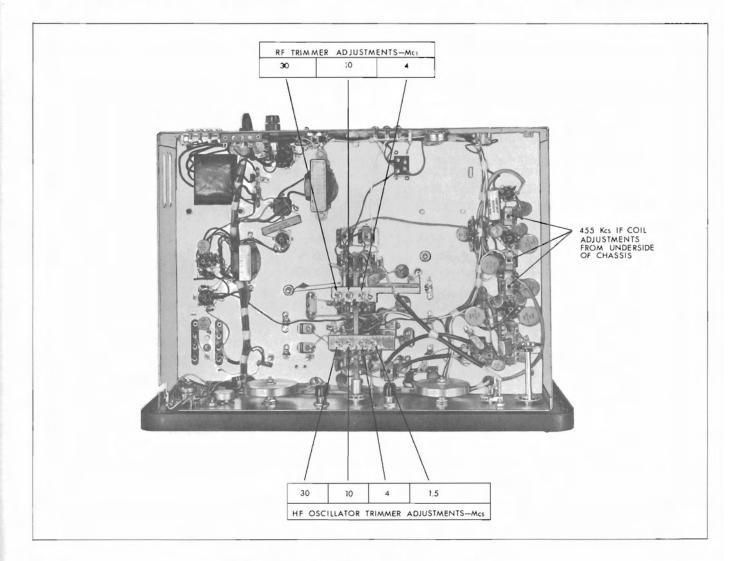


Figure 10. Bottom View of Chassis

IF ALIGNMENT

A high degree of stability has been designed into the receiver making re-alignment unnecessary unless electrical parts are replaced which would affect the tuning of the IF circuits; such as IF transformers, or 455 Kcs crystal.

If for any reason, the 455 Kcs IF system performs unsatisfactorily, it is strongly recommended that a standard tone modulated AM signal generator be used for thoroughly checking the performance of this receiver before proceeding with the alignment.

The IF alingment of the receiver can be accomplished by the sweep generator method and the AM single frequency method. The sweep generator method is the preferred method for re-alignment of the HQ-145A Communications Receiver because of the greater precision to which the IF coils can be adjusted. However, in view of the fact that there are a very limited number of 455 Kcs Sweep Generators available as test equipment, the alternate single frequency alignment method is also described.

SWEEP GENERATOR METHOD (PREFERRED)

The IF alignment of the receiver requires the use of a 455 Kcs sweep generator, an oscilloscope, and a phasing network for proper synchronization. Alignment should not be attempted unless suitable equipment is on hand and considerable experience in sweep alignment techniques has been acquired.

In practically all of the cases requiring re-alignment an over-all touch-up operation will be required. This is accomplished by connecting the sweep generator cable to the grid of the first mixer (pin 7-V2), and connecting the oscilloscope input cable across the volume control. Connect a large ceramic disc type of capacitor (.01 mfd) in series with the cable inner conductor (dc blocking capacitor).

Apply a small amount of sweep signal to the receiver and adjust the oscilloscope for a relatively large amount of gain and satisfactory picture size. Check the phasing control knob position to indicate the triangular indice and turn crystal knob to position "4". Adjust phasing network so that forward and return traces of the sweep co-incide. Peak align 455 Kcs windings for maximum amplitude (T5 and T6 top cores, T7, T9, T10, T11) and omit T8. Then turn crystal selectivity knob to position "1", and adjust T8 so that a tall selectivity curve with a slightly flattened peak is obtained. At the proper adjustment the abrupt change (spike) in the smooth selectivity curve will be located very close to the baseline of the trace, and the amplitude of the trace on positions "OFF" and "1" will be practically identical.

Re-adjust all 455 Kcs IF coils again (except T8) so that symmetry and phasing co-incide on positions "OFF, 1, 2, 3, and 4".

NOTE

The sweep generator frequency must be adjusted to obtain exact coincidence of the forward and return trace. If complete co-incidence is not obtained, alternately make slight adjustments of the phasing control and sweep generator frequency until the images co-incide. After these steps have determined the exact frequency of the 455 Kcs crystal, the center frequency of the sweep generator should be re-adjusted.

SINGLE FREQUENCY METHOD (ALTERNATE)

Connect the output cable of the 455 Kcs unmodulated signal generator to the grid (pin 7) of the first mixer V2 and the chassis. Connect a dc vacuum tube voltmeter between the diode plate pin 1 (V6) 6AL5 socket and chassis.

Adjust the Front Panel Controls as specified above, and adjust the Signal Generator frequency for maximum output with crystal selectivity set to position "4". Turn to position "1" and peak align all 455 Kcs IF transformer windings (T5 and T6 top cores, T7, T8, T9, T10 and T11). Repeat procedure on crystal positions 1 and 4 to insure accurate coil adjustments. BEAT FREQUENCY OSCILLATOR ALIGNMENT

With the same equipment and set-up as used in the preceding paragraph, turn crystal selectivity to position 5 and adjust the signal generator frequency for maximum reading. Turn signal generator modulation on, turn crystal selectivity off, and turn Send-Receive Switch to CW/SSB.

Loosen stop collar set screws on CW Pitch shaft (located directly behind the Front Panel). Turn CW Pitch knob for an audible zero beat on the loudspeaker. Tighten set screws so that the longer set screw is located in the mid-position with respect to the stop lug. Loosen the CW Pitch knob set screws and adjust knob indication so that it points vertically up on zero beat (mid-position).

3035 KCS IF ALIGNMENT

After 455 Kcs IF Alignment using either system, peak align the bottom cores of T5 and T6 by feeding in a 3035 Kcs signal in the same manner described in previous paragraph, and make certain that the Band Selector switch indicates 10-30 Mcs Range.

RF ALIGNMENT

- The slugs and trimmers have been factory adjusted and should require a minimum amount of adjustment during re-alignment.
- All Antenna, RF, and Oscillator coil adjustments are made from the top side of the chassis at the specified frequencies as shown in figure 9.
 All trimmer adjustments are made at the

specified frequencies as shown in figure 10.

- Connect the unmodulated, signal generator output cable to the antenna and ground terminals of the receiver, with the Terminal A adjacent to the G terminal jumped together (See figure 4). Insert in series with the inner conductor of the output cable, a 100 ohm dummy antenna resistor.
- Set the controls the same as for IF alignment as described above.
 Adjust the Sensitivity Control as required to prevent overloading and also to obtain sufficient signal reading on the VTVM connected to pin 1 of V6 (6AL5).
- 5. The Oscillator Circuit is first adjusted to

indicate proper dial calibration at the specified frequencies on each band, then the RF and finally the Antenna Circuits. A certain amount of interaction will occur between the Oscillator and RF adjustments, particularly on the higher frequency bands. Final adjustment should be accomplished by combined or alternate adjustment of the oscillator and RF for maximum amplitude and accurate dial calibration.

NOTE

The trimmer adjustments should always be the final adjustment for each band.

There is no trimmer adjustment on the .54 to 1.6 Mcs band.

- 6. Note that the HF oscillator frequency in the HQ-145A is always located above the signal frequency by 455 Kcs for signals located below 10 Mcs., and by 3035 Kcs for signals located above 10 Mcs. It is necessary to make certain the oscillator frequency is always adjusted so that it is above the incoming signal frequency.
- During RF alignment the Antenna Tuning Capacitor C3 must be placed in the mid-position of its range on all bands except the broadcast band.

On the broadcast band (.54 to 1.60 Mcs), the antenna tuning capacitor (C3) is adjusted to approximately 45 degrees from its maximum capacity position when the Main Dial indicates 600 Kcs. With this setting the Antenna Coil (T1) and top slug of the RF Coil (L4) are peak aligned. When the Main Dial indicates 1500 Kcs the Antenna tuning capacitor (C3) should be checked for a double peak. While tuning across the band, the capacitor setting required for maximum signal pick-up will progressively change from maximum to minimum as the frequency of received signal increases.

POSSIBLE RECEIVER DIFFICULTY

 If upon turning the power "ON" the dial scales are not illuminated, check for a blown fuse.

On the HQ-145AC models when turning the power "ON" the dial scales are not illuminated and after two minutes of waiting the receiver fails to operate, the clock timer is not making contact. Manipulate the clock timer knob to indicate the "ON" position with the AC power switch, (Audio Gain Knob) "ON". The clock timer switch should always point to the "ON" position unless the automatic timer is utilized.

2. Excessive Hum usually is due to a defective 12AX7 tube (V7). This tube type may test good in a tube testing device but may be unusable because of higher than average heater-to-cathode leakage within the tube.

3. <u>Poor Noise Limiter action</u> is usually due to a poor or defective 6AL5 tube (V6). Remember that the use of the noise limiter will always result in some signal distortion for effective noise limiting action. When listening to strong broadcast stations or strong local signals, the noise limiter switch should be in the OFF position unless slight distortion is preferable to excessive pulse type of noise, such as ignition interference.

4. Erratic or Poor "S" Meter performance is usually due to the two 6BA6 (V4 and V5) vacuum tubes. Merely interchanging these tubes may provide sufficient improvement. Replacing one or both of these tubes may be advisable before suspecting other troubles.

The majority of all receiver troubles have been found to be due to one or more defective tubes. Rough handling in shipment is largely responsible for the poor performance of the receiver.

Please, therefore, be sure to follow the above suggestions and have all vacuum tubes tested before writing to the Hummarlund Mfg. Co.

MAINTENANCE

The HQ-145A is designed to give years of trouble-free service. Tube failure is the most common source of trouble. The second most common cause of difficulty is component failure among small resistors and fixed capacitors.

The following charts give voltages and resistances between the tube socket terminals and chassis. Voltages indicated are those measured with a vacuum tube voltmeter; resistances with a vacuum tube ohmmeter. Slight variations in the order of 10 percent from indicated values should be disregarded. With the aid of the chart and schematic diagram, components can usually be located. The parts listing in the back pages of this manual gives component values and Hammarlund part numbers.

Standard items may be purchased locally, nonstandard components are available on order from the factory.


A sensitive communications receiver should be entrusted only to a qualified technician. Should difficulty be experienced, please write Customer Service, Hammarlund Manufacturing Company, for advice or to arrange for factory service.

TABLE 1. TUBE SOCKET VOLTAGES

Controls adjusted to the following positions unless otherwise specified:

Band - 10-30 Mcs	Function Switch - Receive	Antenna - Disconnect
AVC ON-OFF Switch - OFF	RF Gain - Max.	Crystal Selectivity - OFF
Noise limiter - OFF	AF Gain - Max.	AC line Volts - 117 V. AC
	SOCKET DIN NUMBER	

	JBE SOCKET	SOCKET PIN NUMBER								
	JDE SOCKET	1	2	3	4	5	6	7	8	9
V1	RF Tube 6BZ6	. 3	1.60	0	6.3AC	270	105	0		
V2	lst Mixer 6BE6	-2.45 to -12.0	2.3	0	6.3AC	270	80	0		
V 3	2nd Mixer 6BE6	3.2	0	0	6. 3AC	265	74	92		
V4	IF Ampl. 6BA6	. 42	0	0	6. 3AC	250	100	2.20		
V 5	IF Ampl. 6BA6	0	0	0	6.3AC	250	100	2.80		
V6	DETNL 6AL5	42	70	0	6.3AC	0	0	- . 43		
V7	Audio-BFO 12AX7	100	0	. 72	6.3AC	6.3AC	-1.25	77	0	0
V 8	PWR. Ampl. 6AQ5	0	16	0	6.3AC	275	270	0		
V 9	HF Osc. 6C4	100		6. 3AC	0		-4.4 to -29	0		
V10	Volt. Reg. OB2	105	~~			105		0		

1

TABLE 2. TUBE SOCKET RESISTANCE CONDITIONS SAME AS IN THE TABLE 1. - TUBE SOCKET VOLTAGE

PIN SOCKET			SOCKET PIN NUMBER							
	N SOCKET	1	2	3	4	5	6	7	8	9
V1	RF Tube 6BZ6	l megohm	180	0		40K	40K	0		
V2	lst Mixer 6BE6	47K	470	0		40K	50K	0		
V 3	2nd Mixer 6BE6	33K	l ohm	0		40K	45K	100K		
V4	IF Ampl. 6BA6	l megohm	0	0		40K	45K	180		
V 5	IF Ampl. 6BA6	10	0	0		40K	45K	300		
V6	DETNL 6AL5	100K	200K	0		0	0	100K		
V7	Audio - BFO 12AX7	600K	l megohm	2.2K			INF	47K	0	0
V 8	PWR. Ampl. 6AQ5	500K	430	0		40K	35K	500K		
v 9	HF Osc. 6C4	40K			0		68K	0		
V10	Volt. Reg. 0B2	40K				40K		0		

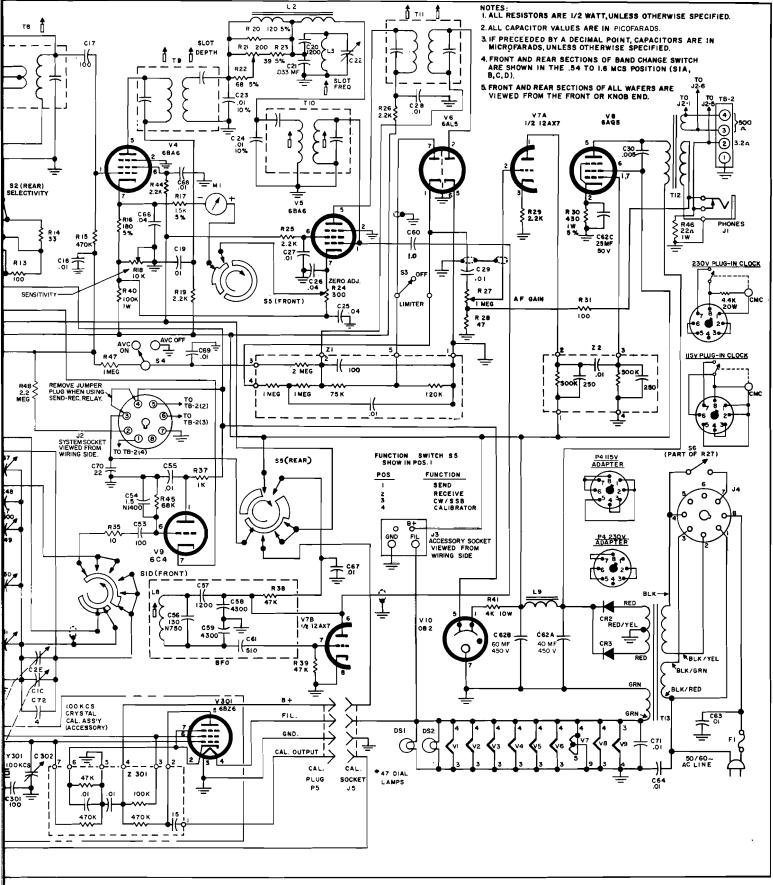
Page 18

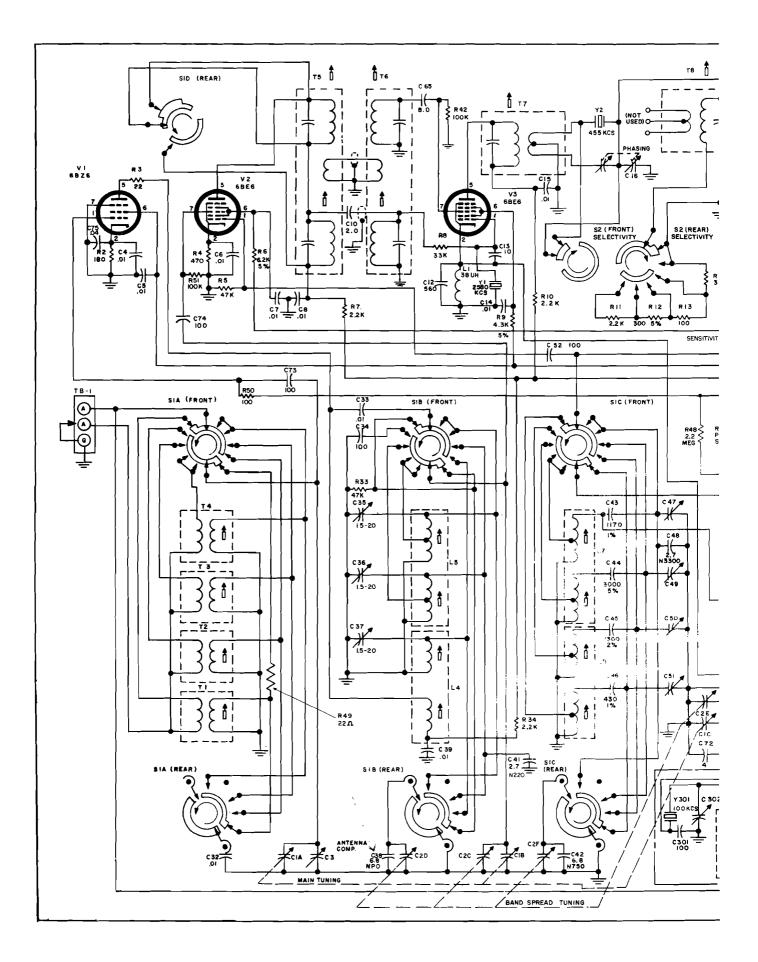
.

· ·

PARTS LIST HQ-145A

SCHEMATIC DESIGNATION	DESCRIPTION	HAMMARLUNI PART NO.
	CAPACITORS	<u> </u>
C1, A-C C2, C-F C3 C4, C5, C6, C7, C8, C14, C15, C18, C19, C27, C28, C29,	Variable, Main Tuning Variable, Bandspread Variable, Antenna Compensator Fixed, Ceramic Disc, .01 mf, +80 -20% 600V	9441-60-40006 9441-60-40007 9434-45-40024 1509-01-01011
C32, C33, C39, C55, C67, C68, C69, C71 C10 C12 C13 C16 C17, C34, C52, C53,	Fixed, Dur-Mica, DM-15, 2.0 pf $\frac{1}{2}$, 5 pf, 500V Fixed, Dur-Mica, DM-15, 560 pf, -5%, 500V Fixed, Dur-Mica, DM-15, 10 pf, 500V Variable, Crystal Filter Fixed, Dur-Mica, DM-15, 100 pf, $\frac{1}{2}$ 10%, 500V	1519-01-00024 1519-01-03004 1519-01-00006 9411-77-60002 1519-01-00001
C74 C20 C21 C22 C23, C24 C25, C26, C66, C75 C30 C35, C36, C37 C38	Fixed, Dur-Mica, DM-15, 1200 pf, 500V Fixed, Molded Mylar, .033 pf, 200V Variable, Slot Tuning Fixed, Ceramic Disc, .01 mf, $\frac{1}{2}$ 10%, 1000V Fixed, Ceramic Disc, .04 mf, \pm 80 -20%, 600V Fixed, Ceramic Disc, .005 mf, G. M. V., 1000V Trimmer, Mica 1.5-20pf Fixed, Disc NPO 6.8 pf, 1000V	1519-01-03003 1528-01-00001 1509-01-01014 1501-01-00020 1509-01-01003 1521-01-00003 1509-01-00003
C41 C42 C43 C44 C45 C46 C47, C49, C50, C51 C48	Fixed, Temp. Comp., 2.7 pf, 1000V Fixed, Disc, N-750, 6.8 pf, -5%, 1000V Fixed, Dur-Mica, 1170 pf, 500V Fixed, Dur-Mica, DM-20, 3000 pf, +5%, 300V Fixed, Dur-Mica, DM-20, 1300 pf, +2%, 300V Fixed, Dur-Mica, DM-15, 430 pf, +1%, 300V Trimmer, Variable Rotary Fixed, Disc, N3300, 2.7 pf, +.25 pf, 500V	1509-01-00001 1509-02-00010 1519-02-03007 1519-02-05002 1519-02-05002 1519-02-00029 1527-01-00001 1509-02-02004
C54 C56 C57 C58, C59 C60 C61 C62, A, B, C C63, C64 C65 C70 C72 C73	Fixed, Temp. Comp., N1400, 1.5 pf, \pm .25 pf, 500V Fixed, Temp. Comp., N750, 130 pf, \pm 5%, 500V Fixed, Dur-Mica, DM-19, 1200 pf, 500V Fixed, Dur-Mica, DM-30, 4300 pf, \pm 5%, 500V Fixed, Dur-Mica, DM-15, 1.0 pf, 500V Fixed, Dur-Mica, DM-15, 10 pf, 500V Fixed, Electrolytic, 40/60/25 mf, 450/450/50V Fixed, Ceramic Disc, .01 mf, 1400V Fixed, Dur-Mica DM-15, 8.0 pf \pm .5 pf, 300V Fixed, Mylar, .22 mf \pm 10%, 400V Fixed, Dur-Mica DM-15, 4 pf \pm .5 pf, 500V Fixed, Dur-Mica DM-15, 100 pf \pm 10%, 500V	1509-01-02002 1509-01-03001 1519-01-03006 1519-01-06001 1519-01-00023 1519-01-03002 1517-01-00001 1509-01-01015 1519-02-00021 1519-02-00025 1519-01-00001
	RESISTORS	
R2 R3, R49 R4 R5, R38, R39 R6 R7, R10, R11, R19, R25, R26, R29, R34, R44	180 ohms + 10%, 1/2 W. 22 ohms - 10%, 1/2 W. 470 ohms + 10%, 1/2 W. 47K ohms - 10%, 1/2 W. 6. 2K ohms + 5%, 1/2 W. 2. 2K ohms - 10%, 1/2 W.	4703-01-00323 4703-01-00312 4703-01-00328 4703-01-00352 4703-02-00466 4703-01-00336
R8 R9 R12 R13, R31 R14 R15 R15 R16	$33K^{\pm}_{-1}10\%, 1/2 W.$ $4.3K^{\pm}_{-5\%, 1/2}W.$ $300 \text{ ohms } \pm 5\%, 1/2 W.$ $100 \text{ ohms } \pm 10\%, 1/2 W.$ $33 \text{ ohms } \pm 10\%, 1/2 W.$ $470 \text{ ohms } \pm 10\%, 1/2 W.$ $180 \text{ ohms } \pm 5\%, 1/2 W.$	4703-01-00350 4703-02-00462 4703-02-00434 4703-01-00320 4703-01-00314 4703-01-00364 4703-02-00429




SCHEMATIC DESIGNATION	DESCRIPTION	HAMMARLUND PART NO.
	RESISTORS (CONT.)	<u>_</u>
R20 R21 R22 R23 R24 R27 R28 R30 R33 R35 R37 R40 R41 R42, R50, R51 R45 R46 R47 R48	120 ohms ⁺ 5%, 1/2 W. Variable, 200 ohms, (Slot Depth) 68 ohms ⁺ 5%, 1/2 W. 39 ohms ⁻ 5%, 1/2 W. Variable, 300 ohms, (Meter Zero Adj.) Variable, 1.0 megohm (Audio Gain) Includes Power Switch (S6) 47 ohms ⁺ 10%, 1/2 W. 430 ohms ⁺ 5%, 1 W. 47K ⁻ 10%, 1/2 W. 10 ohms ⁺ 10%, 1/2 W. 10 ohms ⁺ 10%, 1/2 W 1K ⁻ 10%, 1 W. 4K ⁻ 10%, 1 0 W. 100K ⁺ 10%, 1/2 W. 68K ⁺ 10%, 1/2 W. 22 ohms ⁺ 10%, 1 W. 1 megohm ⁻ 10%, 1/2 W.	$\begin{array}{c} 4703-02-00425\\ 4735-01-00201\\ 4703-02-00419\\ 4703-02-00413\\ 4735-01-00400\\ 4735-02-08000\\ \end{array}$
	COILS	
L1 L2 L3 L4 L5 L6 L7 L8 L9 T1 T2 T3 T4 T5, T6 T7, T8 T9, T10 T11 T12 T13	RF Choke, 38 micorhenries Bifilar Slot Filter RF Coil Assembly, .54 to 1,6 mcs, 1.6 to 4.0 mcs RF Coil Assembly, 4.0 to 10.0 mcs, 10.0 to 30.0 mcs. Osc. Coil Assembly, .54 to 1.6 mcs, 1.6 to 4.0 mcs Osc. Coil Assembly, 4.0 to 10.0 mcs, 10.0 to 30.0 mcs BFO Coil Assembly Filter Choke TRANSFORMERS Antenna Coil Assembly, .54 to 1.6 mcs Antenna Coil Assembly, 1.6 to 4.0 mcs Antenna Coil Assembly, 1.6 to 4.0 mcs Antenna Coil Assembly, 4.0 to 10.0 mcs Antenna Coil Assembly, 10.0 to 30.0 mcs IF Transformer, crystal Filter IF Transformer IF Transformer Audio Output Transformer Power Transformer, 230/115V Primary	1804-01-00001 1804-01-00162 1803-01-00106 1809-01-00005 1811-01-00011 1809-01-00006 1811-01-00012 9001-03-00016 5627-01-00003
	SWITCHES	
S1, A, B, C S1, D S2 S3, S4 S5 S6	Switch, Wafer, Ant., RF, Osc. Switch, Wafer, Osc. 2nd Mixer Switch, Selectivity Switch, SPST (AVC ON-OFF or Noise Limiter) Switch, Send Receive-CW/SSB-Cal. Switch, Power ON-OFF	5105-01-00007 5105-02-00017 9001-03-00015 5101-01-00001 5106-02-00009 Included in R27
	TUBES AND DIODES	
V1 V2, V3 V4 V5 V6	Electron, 6BZ6 Electron, 6BE6 Electron, 6BA6 Electron, 6AL5	5721-01-00002 5712-01-00001 5721-01-00001 5702-01-00001

.

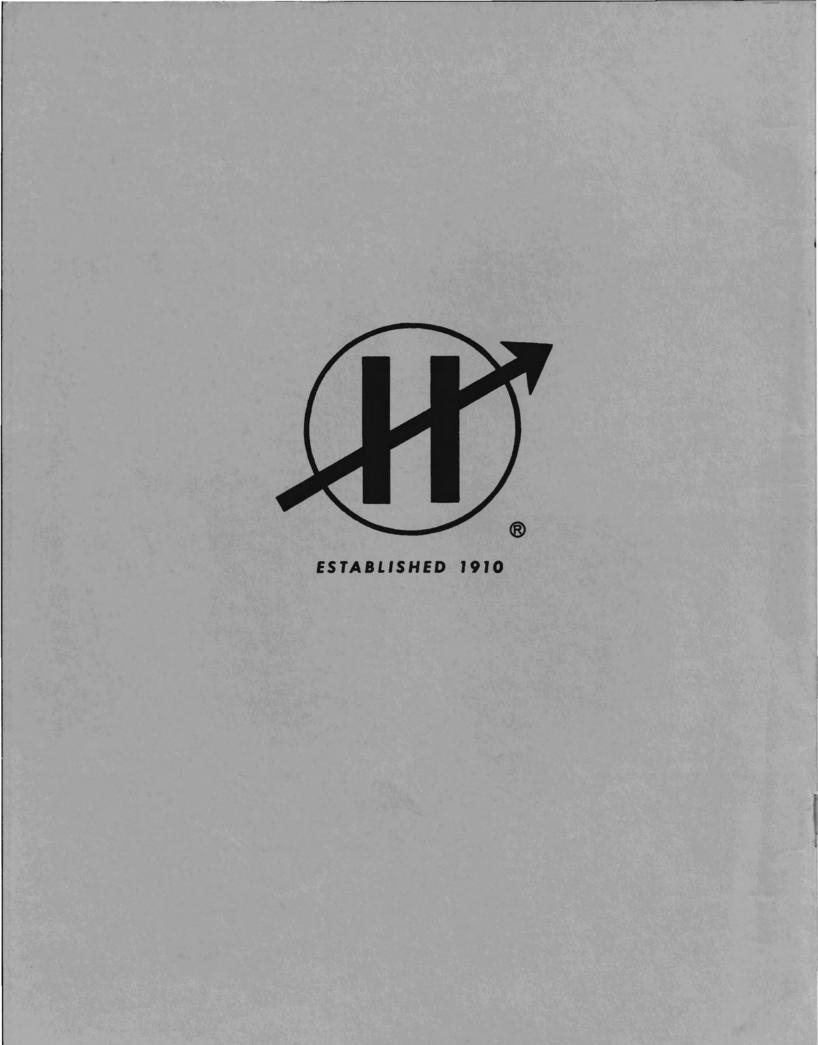
SCHEMATIC DESIGNATION	DESCRIPTION	HAMMARLUND PART NO.
	TUBES AND DIODES (CONT.)	
V7 V8 V9	Electron, 12AX7 Electron, 6AQ5 Electron, 6C4	5705-01-00003 5722-01-00001 5704-01-00001
V10 CR2, CR3	Electron, OB2 Rectifier, Silicon CER72C	5745-01-00002 4807-01-00001
	SPECIAL ASSEMBLIES	
	Crystal Panel, Clock Window	2411-01-00005
Ml	Meter "S" (Carrier Level)	2903-01-00002
Y1	Quartz Crystal, 2580 mcs	2304-01-00004
ΥZ	Quartz Crystal, 455Kcs	2303-02-00001
Z1	RC Printed Network (AVC-Noise)	1711-01-00002
Z2	RC Printed Network (Audio)	1711-01-00001
	MISCELLANEOUS	
DS1, DS2	Lamp, Pilot, No. 47, 5.3V.15A	3901-01-00001
Fl	Fuse, Slow Blow Type 3 AG, 1 Amp. (Used on 115V)	5134-02-00002
Fl	Fuse, Slow Blow Type 3 AG, 1/2 Amp. (Used on 230V)	5134-02-00006
J1	Phone Jack	2109-01-00001
J2	System Socket (8 Pin)	2126-01-00002
J3	Connector, Female (Access. Socket)	2102-01-00013
J4	Socket 115/230V (8 Pin)	2126-01-00002
J5	Connector, Female (Cal. Socket)	2102-02-00014
	Knob, (3/4" Dia.)	2430-01-00003
	Knob, (1" Dia.)	2430-01-00011
	Knob, (l" Dia.) (White Line)	2430-01-00010
	Knob, Bar	2430-01-00050
	Knob, (2" Dia.)	2430-01-00030
	Knob, (Pointer Type)	2430-01-00040
	Window	2411-02-00003
	Spring, BFO Tension	2537-01-00007
	Instruction Manual	9001-06-00002
	OPTIONAL ACCESSORIES	<u> </u>
	Plug-In Crystal Calibrator Assembly XC-100P	9205-00-00021
	Fixed Frequency Crystal Oscillator	9211-00-00002
	Speaker Assembly in Cabinet, matched to the HQ-145A Series Receivers	9210-00-00011
	Telechron Clock Assembly (115V/60 cps)	9207-01-00001
	Telechron Clock Assembly (230V/60 cps)	9207-01-00002
	Telechron Clock Assembly (230V/50 cps)	9207-01-00003
	Coordination Cable Assembly (For use with	9206-00-00060
	various transmitters)	

THE HAMMARLUND MANUFACTURING COMPANY Standard Warranty

The Hammarlund Manufacturing Company, warrants this equipment to be free from defects in workmanship and materials under normal and proper use and service for the uses and purposes for which it is designed, and agrees to repair or replace, without charge, all parts thereof showing such defects which are returned for inspection to the Company's factory, transportation prepaid, within a period of 90 days from date of delivery, provided such inspection discloses to the satisfaction of the Company that the defects are as claimed, and provided also, that the equipment has not been altered, repaired, subjected to misuse, negligence or accident, or damaged by lightning, excessive current or otherwise, or had its serial number or any part thereof altered, defaced, or removed. Tubes shall be deemed to be covered by the manufacturer's standard warranty applicable thereto, and such items shall be and are hereby excluded from the provisions of this warranty. Pilot lamps and fuses are not guaranteed for length of service.

Except as herein specifically provided, no warranty, express or implied, other than that of title, shall apply to any equipment sold hereunder. In no event shall the Company be liable for damages by reason of the failure of the equipment to function properly or for any consequential damages.

This Warranty is valid for the original owner of the equipment, and is contingent upon receipt of the Warranty Registration Card by the Company. No equipment shall be returned to the factory for repairs under warranty unless written authorization is obtained by the Company, and the equipment is shipped prepaid by the owner. The Company maintains Authorized Service Stations, names and locations of which will be sent upon request of the owner.


The Hammarlund Manufacturing Company

A Giannini Scientific Co. 73-88 Hammarlund Drive, Mars Hill, N. C. Export Department: 13 East 40th Street, New York 16, N. Y.

The policy of the Hammarlund Manufacturing Company, is one of continued improvement in design and manufacture wherever and whenever possible, to provide the highest attainable quality and performance. Hence, specifications, finishes, etc. are subject to change without notice and without assumption by Hammarlund of any obligation or responsibility to provide such features as may be changed, added or dropped from previous production runs of this equipment.

> Hammarlund Manufacturing Company A Giannini Scientific Co. 73-88 Hammarlund Drive, Mars Hill, N. C. Export Department: 13 East 40th Street, New York 16, N.Y.

DO NOT MAKE ANY RETURNS WITHOUT AUTHORIZATION FROM THE FACTORY. ALL AUTHORIZED RETURNS SHOULD BE SHIPPED TO HAMMAR-LUND MANUFACTURING CO., ATTN. CUSTOMER SERVICE, MARS HILL, NORTH CAROLINA.

