STMicroelectronics: Cortex™-M4 Training STM32F407 DZ' KE' l:

Discovery evaluation board using ARM® Keil™ MDK toolkit Tools by ARM
featuring Serial Wire Viewer Summer 2014 Version 2.3 by Robert Boys, bob.boys@arm.com
The latest version of this document is here: www.keil.com/appnotes/docs/apnt_261.asp
Introduction: For a CAN lab on the STM32F4 Discovery: www.keil.com/appnotes/docs/apnt_236.asp

The purpose of this lab is to introduce you to the STMicroelectronics Cortex™-M4 processor using the ARM® Keil™ MDK
toolkit featuring the IDE pVision”. We will use the Serial Wire Viewer (SWV) and the on-board ST-Link V2 Debug Adapter.
At the end of this tutorial, you will be able to confidently work with these processors and Keil MDK. See www keil.com/st.

Keil MDK supports and has examples for most ST ARM processors. Check the Keil Device Database® on www keil.com/dd
for the complete list which is also included in MDK: in pVision, select Project/Select Device for target...

Linux: For ST processors running Linux, Android and bare metal are supported by ARM DS-5"". www.arm.com/ds5.

Keil MDK-Lite™ is a free evaluation version that limits code size to 32 Kbytes. Nearly all Keil examples will compile within
this 32K limit. The addition of a valid license number will turn MDK into a full commercial version.

RTX RTOS: All variants of MDK contain the full version of RTX with source code. See www.keil.com/rl-arm/kernel.asp.

Why Use Keil MDK ? MDK provides these features particularly suited for Cortex-M users:

1. wVision IDE with Integrated Debugger, Flash programmer and the
ARM® Compiler toolchain. MDK is a turn-key product.

2. A full feature Keil RTOS called RTX is included with MDK. RTX
comes with a BSD type license. Source code is provided. See
www.keil.com/demo/eval/rtx.htm for full RTX software.

3. Serial Wire Viewer and ETM trace capability is included.

RTX Kernel Awareness window. It is updated in real-time.

5. Keil Technical Support is included for one year and is easily
renewable. This helps you get your project completed faster.

This document details these features:
Serial Wire Viewer (SWV) and ETM trace. Real-time tracing updated while the program is running.

2. Real-time Read and Write to memory locations for Watch, Memory and RTX Tasks windows. These are non-
intrusive to your program. No CPU cycles are stolen. No instrumentation code is added to your source files.

3. Six Hardware Breakpoints (can be set/unset on-the-fly) and four Watchpoints (also known as Access Breaks).
4. RTX Viewer: a kernel awareness program for the Keil RTX RTOS that updates while your program is running.
5. A DSP example program using ARM CMSIS-DSP libraries. www.arm.com/cmsis

Serial Wire Viewer (SWV):

Serial Wire Viewer (SWV) displays PC Samples, Exceptions (including interrupts), data reads and writes, ITM (printf), CPU
counters and a timestamp. This information comes from the ARM CoreSight™ debug module integrated into STM32 CPU.
SWYV does not steal any CPU cycles and is completely non-intrusive. (except for the ITM Debug printf Viewer).

CoreSight displays memory contents and variable values in real-time and these can be modified on-the-fly.

Embedded Trace Macrocell (ETM):

ETM records and displays all instructions that were executed. This is very useful for debugging program flow problems such
as “going into the weeds” and “how did I get here?”. Keil pVision uses ETM to provide Code Coverage, Performance
Analysis and code execution times. ETM requires a special debug adapter such as the ULINKpro. The Discovery series do
not have the ETM connector even though the processor has ETM. Most other ST and all Keil boards do have this connector.

Discovery Board Debug Adapter Connections:

The STM32F407 Discovery board lacks the standard ARM debugger connections. This means it is not easy to connect a
ULINK?2, ULINKpro or J-Link to these boards. In order to use features like ETM trace, it is easier to obtain a board such as
the Keil MCBSTM32 series or a STM32xxx-EVAL board. Versions are available with Cortex-M3 and Cortex-M4 processors.
Keil MDK has examples and labs for these boards. This document uses only the on-board ST-LINK. See www.keil.com/st.

l Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

Index:

1. Keil Evaluation Software: 3
2. Keil Software Installation: 3
3. CoreSight Definitions: 3
4. CMSIS: Cortex Microcontroller Software Interface Standard 3
5. Configuring the ST-Link V2: 4
6. Blinky example using the STM32F4 Discovery board: 6
7. Hardware Breakpoints: 6
8. Call Stack & Locals window: 7
9. Watch and Memory windows and how to use them: 8
10. How to view Local Variables in Watch and Memory windows: 9
11. View Variables Graphically with the Logic Analyzer (LA): 10
12. Watchpoints: Conditional Breakpoints 11
13. RTX_Blinky example: Keil RTX RTOS: 12
14. RTX Kernel Awareness using RTX Viewer: 13
15. Logic Analyzer: View variables real-time in a graphical format: 14
16. ITM (Instrumentation Trace Macrocell): 15
17. Serial Wire Viewer (SWV) and how to use it: 16
1) Data Reads and Writes 16
2) Exceptions and Interrupts 17
3) PC Samples (program counter samples) 18
18. Serial Wire Viewer (SWV) Configuration: 19
19. DSP Sine Example using ARM CMSIS-DSP Libraries 20
20. Creating your own project from scratch: 24
21. ETM Trace and its benefits: for reference 26
22. Serial Wire Viewer and ETM summary: 31
23. Useful Documents: 32
24. Keil Products and contact information: 33

Notes on using this document:

1. The latest version of this document and the necessary example source files are available here:
www.keil.com/appnotes/docs/apnt_261.asp

MDK 4.70 was used in the exercises in this document.

To use MDK 5.10 or later and Software packs, see www.keil.com/appnotes/docs/apnt_230.asp

Configuring the ST-Link V2 debug adapter starts on page 4.

The on-board ST-Link V2 is used by default in this document. All you need install is the USB driver to your PC.
The original ST-Link (usually called V1) is supported by uVision. This ST-Link does not have Serial Wire Viewer.

A ol

The first exercise starts on page 6. You can go directly there if using a ST-Link. If you are using a ULINK2,
ULINK-ME, ULINKpro or J-Link, you will need to configure it appropriately as described on the following pages.

8. The ST-Link V2 interfaces very well with Keil pVision and its performance is quite good including SWV.

2 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

1) Keil Evaluation Software:
Example Programs:

MDK contains many useful ready-to-run examples for boards using ST processors. See C:\Kei\ARM\Boards\ST and \Keil.
Many examples are provided to also run in the Keil Simulator. No hardware is needed in these cases.

MDK 4.70 contains two example programs: Blinky and RTX Blinky. This Blinky is used in this lab. RTX Blinky must be
upgraded. The new one blinks all four leds on the Discovery board. A new example, DSP must also be added.

These files can be downloaded from www.keil.com/appnotes/docs/apnt 261.asp. The latest version of this document is also
available at this location. Put these two directories in file C:\Kei\ARM\Boards\ST\STM32F4-Discovery\ to create \DSP and
\RTX_ Blinky directories respectively.

Keil has several labs for various STM32 processors including one using CAN. See www.keil.com/st for details.

The directory \RL consists of middleware examples. Such middleware is a component of MDK Professional. To run these
examples a full license is needed. Please contact Keil sales for a temporary license if you want to evaluate Keil middleware
and for the list of supported processors.

STMicroelectronics has an entire suite of examples for various STM32 processors using Keil MDK. See www.st.com.
Keil Sales: In USA and Canada: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com

2) Keil Software Installation:

This document was written using Keil MDK 4.70 or later which contains pVision 4. The evaluation copy of MDK (MDK-
Lite) is available free on the Keil website. Do not confuse pVision 4 with MDK 4.0. The number “4” is a coincidence.
Nearly all example programs can be compiled within the 32K limit of MDK-Lite: the free evaluation version.

To obtain a copy of MDK go to www.keil.com/arm and select the “Download” icon located on the right side.

You can use the evaluation version of MDK-Lite for this lab. A debug adapter such as a ULINK2 is not needed.

3) CoreSight Definitions: Tt is useful to have a basic understanding of these terms:
e JTAG: Provides access to the CoreSight debugging module located on the Cortex processor. It uses 4 to 5 pins.

e SWD: Serial Wire Debug is a two pin alternative to JTAG and has about the same capabilities except Boundary Scan
is not possible. SWD is referenced as SW in the pVision Cortex-M Target Driver Setup. See page 4, 2™ picture.
The SW1J box must be selected in ULINK2/ME or ULINKpro. Serial Wire Viewer (SWV) must use SWD because
the JTAG signal TDIO shares the same pin as SWO. The SWV data normally comes out the SWO pin.

e SWV: Serial Wire Viewer: A trace capability providing display of reads, writes, exceptions, PC Samples and printf.

e DAP: Debug Access Port. This is a component of the ARM CoreSight debugging module that is accessed via the
JTAG or SWD port. One of the features of the DAP are the memory read and write accesses which provide on-the-
fly memory accesses without the need for processor core intervention. pVision uses the DAP to update memory,
watch and RTOS kernel awareness windows in real-time while the processor is running. You can also modify
variable values on the fly. No CPU cycles are used, the program can be running and no code stubs are needed in your
sources.

You do not need to configure or activate DAP. pVision configures DAP when you select a function that uses it.

e SWO: Serial Wire Output: SWV frames usually come out this one pin output. It shares the JTAG signal TDIO.
e Trace Port: A 4 bit port that ULINKpro uses to collect ETM frames and optionally SWV (rather than SWO pin).

e ETM: Embedded Trace Macrocell: Displays all the executed instructions. The ULINKpro provides ETM. ETM
requires a special 20 pin CoreSight connector. ETM also supplies Code Coverage and Performance Analysis.

4) CMSIS: Cortex Microcontroller Software Interface Standard
ARM CMSIS-DSP libraries are offered for Cortex-MO0, Cortex-M3 and Cortex-M4 processors.
CMSIS-RTOS provides standard APIs for RTOSs. RTX is a free RTOS available from ARM as part of CMSIS Version 3.0.

RTX is included in MDK and can also be downloaded from www.keil.com/demo/eval/rtx.htm.

See www.arm.com/cmsis and http://community.arm.com/groups/tools/content for more information.

Also see www.keil.com/st and www.keil.com/forum

3 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

5) Configuring the ST-Link V2:

It is easy to select a USB debugging adapter in pVision. You must configure the connection to both the target and to Flash
programming in two separate windows as described below. They are each selected using the Debug and Ultilities tabs.

Using other Debug Adapters: This document will use the on-board ST-Link. You can use a ULINK2 or a ULINKpro with
suitable adjustments. You would need a suitable adapter to connect a different adapter to the SWD connector on the
Discovery board. Some step(s) to turn off the on-board ST-Link adapter might also be necessary to avoid conflicts. It is
reported that shorting solder bridge SB10 will hold the ST-Link processor in RESET allowing external adapter operation.

If your debugging sessions are unreliable, please check for additional conflicts or loading on the SWD pins. The SWD
connector provides the ability to use the Discovery board as a debug adapter on another board. Its main purpose is not to
connect an external tool such as a Keil ULINK2. Some adaptation is required but not difficult to do.

It is possible to use a Segger J-Link with puVision. Serial Wire Viewer is supported.
The ST-Link is selected as the default debug adapter for the Keil examples for this Discovery board.
Serial Wire Viewer (SWV) is completely supported by ST-LINK Version 2. Firmware V2.16.S0.

Step 1) Installing the ST-Link USB Drivers: (you need to do this the first time only)
1. Do not have the Discovery board USB port connected to your PC at this time.

2. The USB drivers must be installed manually by executing ST-Link V2 USBdriver.exe. This file is found in
C:\KeilARM\STLink\USBDriver. Find this file and double click on it. The drivers will install.

3. Plug in the Discovery board to USB CN1. The USB drivers will now finish installing in the normal fashion.

Super TIP: The ST-Link V2 firmware update files are located here: C:\KeilARM\STLink. This updates the Discovery ST-
Link firmware by executing ST-LinkUpgrade.exe. Find this file and double click on it. It will check and report the current
firmware version. It is important you are using firmware V2.J16.S0 or later for proper SWV operation.

Step 2) Select the debug connection to the target: The following steps are already done by default in the three example
programs. These instructions are provided for reference.

1. Connect your PC to the Discovery board with a USB cable. Start pVision. It must be in Edit mode (as it is when
first started — the alternative to Debug mode) and you have selected a valid project. Blinky will do fine.
2. Select Target Options #N or ALT-F7 and select the Debug tab. In the drop-down menu box select ST-Link
Debugger as shown here: — =T
TIP: Do NOT select ST-Link (Deprecated Version).

¢ Use: [sT0 = :
3. Select Settings and the next window below opens up. This is the control U |ST Lk Debugoer =l M
panel for the ULINKSs and ST-Link. (they are the same).

4. InPort: select SW. JTAG is not a valid option for ST-Link and this board. SW is also known as SWD.

In the SW Device area: ARM CoreSight SW-DP MUST be displayed. This confirms you are connected to the target
processor. If there is an error displayed or it is blank this must be fixed before you can continue. Check the target

| Linker Debug | Liites |

power supply. Cycle the power to the board. |
Debug |T|a:e | Rash Download |
Debug Adapter SW Device
TIP: To refresh this screen select Port: and change it or click OK i SRR = IDCODE____ Device Nare ‘ teve
’ . R) o SWDIO| (:2BAD1477 ARM CoreSight SW-DP Up |
once to leave and then click on Settings again. S R
HW Version: [V2 D
TIP: You can do everything with SW (SWD) as you can with Fimwere Verson: [V217550 B B peoe [
JTAG except for boundary scan. Pot || || € Vane Confaaaton) | Deve lane [T
Max Clack: [1MHz 2 Add DEIeteI Upidate IR [en I

~Debug
Connect & Reset Option:

Next: configure the Keil Flash programming tool: (um:mm‘] Rese froocos =

[V Reset after Connect

Cache Options Download Options
[V Cache Code [¥ Verfy Code Download
¥ Cache Memory ™ Download to Flash

OK I Cancel Apply

4 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

Step 3) Configure the Keil Flash Programmer:
6. Click on OK once and select the Utilities tab.
7. Select the ST-Ling Debugger similar to Step 2 above.
8. Click Settings to select the programming algorithm if it is not visible or is the wrong one.

9. Select STM32F4xx Flash as shown here or the one for your processor:

10. Click on OK once. x|
. Debug | Trmce Flash Dowioad |
TIP: To program the Flash every time you enter Debug mode, e s e
check Update target before Debugging. e E %%? E\E'"“M - T T
TIP: If you select Use Debug Driver, the debugger you selected — = o
in the Debug tab will be used. y |__Device Type_|_Device Sze | Address
STM32F&cx Rash On-chip Alash m (0B000000H - DSOFFFFFH
11. Click on OK to return to the pVision main screen.
12. Select File/Save All.
13. You have successfully connected to the STM32 target ! et _[iinanionc)
processor and configured the pVision Flash 2 Rescve
programmer.
TIP: The Trace tab is where you configure the Serial Wire —o | o | —

Viewer (SWV). You will learn to do this later.

COM led LD1 indication:

LED is blinking RED: the first USB enumeration with the PC is taking place.

LED is RED: communication between the PC and ST-LINK/V?2 is established (end of enumeration). pVision is not connected
to ST-Link (i.e. in Debug mode).

LED is GREEN: pVision is connected in Debug mode and the last communication was successful.

LED is blinking GREEN/RED: data is actively being exchanged between the target and pVision.

No Led: ST-LINK/V2 communication with the target or pVision has failed. Cycle the board power to restart.

Running programs in the internal STM32 RAM:

It is possible to run your program in the processor RAM rather than Flash. In this case, the Flash programming tool is not

used nor is the Load icon. After successfully compiling the source files, click on Debug icon @2 . An .ini file configures the
processor and loads your executable into RAM.

The Discovery Blinky project has a RAM setting. Select STM32F407 RAM as shown Project Flash Debug Peripherals T
here if you want to try this mode. —— A ™
T3 STM32F407 RAM - 3K

Loading and Running your program into RAM:
1. Select STM32F407 RAM as shown above. x|

Select Target Options #N or ALT-F7 and select the Debug tab. | Lker Debug | it |
The ini file is located in the Initialization File: box as shown here: % Use: |ST-Link Debugger E ﬂ[

2
3
4. Click on Edit... tso view its contents.
5

. . . I” Load Application at Startup I~ FLin to main(]
Click on the Target tab. Note the RAM at 0x2000_0000 is split Initialization Fie:

between the R/O and R/W memory areas. [\Dbg_RAMm J Edt. [
Click on OK to return to the main pVision window.
Return to the STM32F407 Flash setting.

5 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

6) Blinky example program using the ST Discovery board:

We will connect a Keil MDK development system using real target hardware using the built-in ST-Link V2 debug adapter.

Start pVision by clicking on its desktop icon. .28 Connect your PC to the board with a USB cable to CN1.

2. Select Project/Open Project. Open the file C:\KeiNARM\Boards\ST\STM32F4-Discovery\Blinky\Blinky.uvproj

By default, the ST-Link is selected. If this is the first time you have run pVision and the Discovery board, you will
need to install the USB drivers. See the configuration instructions on page 4 in this case.

5y
4. Compile the source files by clicking on the Rebuild icon. Ll . You can also use the Build icon beside it.

LOAD

5. Program the STM32 flash by clicking on the Load icon: ## Progress will be indicated in the Output Window.

6. Enter Debug mode by clicking on the Debug icon. @ Select OK if the Evaluation Mode box appears.
Note: You only need to use the Load icon to download to FLASH and not for RAM operation if it is chosen.

7. Click on the RUN icon. = Note: you stop the program with the STOP icon. o

The LEDs on the STM32F4 Discovery board will now blink in succession.

Press the USER button and they will all come on.

Now you know how to compile a program, program it into the STM32 processor Flash, run it and stop it !

Note: The board will start Blinky stand-alone. Blinky is how permanently programmed in the Flash until reprogrammed.

7) Hardware Breakpoints:

The STM32F4 has six hardware breakpoints that can be set or unset on the fly while the program is running.

1. With Blinky running, in the Blinky.c window, click on a darker grey block in the left margin on a line in main() in the
while loop. Between around lines 80 through 91 will suffice.

2. A red circle will appear and the program will stop.

Note the breakpoint is displayed in both the disassembly and source windows as shown below:

4. You can set a breakpoint in either the Disassembly or Source windows as long there is a gray rectangle indicating the

existence of an assembly instruction at that point.

5. Every time you click on the RUN icon E] the program will run until the breakpoint is again encountered.

? Tk W
6. You can also click on Single Step (Step In) & , Step Over th and Step Out & .

TIP: If single step (Step In) doesn’t work, click on the
Disassembly window to bring it into focus. If needed, click on a
disassembly line. This tells pVision you want to single step at the
assembly level rather than at the C source level.

TIP: A hardware breakpoint does not execute the instruction it is
set to. ARM CoreSight breakpoints are no-skid. These are rather
important features for efficient software development.

Remove all the breakpoints when you are done for the next
exercise by clicking on them again.

TIP: You can delete the breakpoints by clicking on them or
selecting Debug/Breakpoints (or Ctrl-B) and selecting Kill All.
Click on Close to return.

TIP: You can view the breakpoints set by selecting
Debug/Breakpoints or Ctrl-B.

Disassembly

2 x|

as: if (num
3 0x0800054E 2C0%
0x08000550 D102
0x08000552 1F65
0x08000554 2403
0x08000556 E003

26: else if
0x08000558 2C00
0x0800055A DAOD1

0x0800055C 2501
0x0D800D55E 2400

LED On
l«1J

== LED NUM) { dir = -1; num = LED NUM-1; }
cup r4,40x04

BNE 0x08000558

SUBS 5,14, 45

MOVS r4,$0x03

5 0x08000560

(num < 0) { dir = 1; num = O;
cup r4,$0x00
BGE 0x08000560

MOVS
MOVS
(num) ;

r5,#0x01
r4,$0x00

- |

-

[) Abstractt | [3] startu

p_stm32fxc.s / Blinky.c r system_stm32fdncc r LED.c |

4
%

82 if (btas != (1UL << 0)) {

L

83 /% Calculate 'num’: ...,LED NUM-1,LED NUM-1,...,1,0,0,... =/
84 num += dir:
& 85 if (num == LED NUM) { dir = -1; num = LED NUM-1; }
86 else if (num < 0) { dir = 1; num = O0;
87
88 LED On (num):
EE Delay(50}; /* Delay 50ms
90 LED Off (num) ;
91 Delay(200);
92]
93 else {
-— ot o

B

6

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit

Copyright © 2014 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

8) Call Stack + Locals Window:
Local Variables:

The Call Stack and Local windows are incorporated into one integrated window. Whenever the program is stopped, the Call
Stack + Locals window will display call stack contents as well as any local variables belonging to the active function.

If possible, the values of the local variables will be displayed and if not the message <not in scope> will be displayed. The
Call + Stack window presence or visibility can be toggled by selecting View/Call Stack window.

1. Run and Stop Blinky. Click on the Call Stack + Locals tab.

2. Shown is the Call Stack + Locals window. Call Stack + Locals
The contents of the local variables are displayed as well as Mame Location/Value Type
names of active functions. Each function name will be - @ Delay 0x0B000482 void flunsigned int)
displayed as it is called from the function before it or from % diyTicks 0x000000C8 param - unsigned int
an interrupt or exception. W curTicks 0x:0000012C auto - unsigned int
. . . El- % main 0x080004D0 int f{
When a function exits, it is removed from the list. i @ num wutoint
The first called function is at the bottom of this table. ----- @ dir 0x00000001 auto - int
This table is active only when the program is stopped. | ¥ btns 0x00000000 aute - unsigned int
i:;.} ,j Call 5tack + Locals | Memory 1 |

Click on the Step In icon or F11:
4. Note the function different functions displayed as you step through them. If you get trapped in the Delay function,

iy) .
use Step Out or Ctrl-F11 to exit it faster.
Click numerous times on Step In and see other functions.

6. Right click on a function name and try the Show Callee Code and Show Caller Code options as shown here:

. . q . . . AadSnnn A4 I
7. Click on the StepOut icon & to exit all functions to return to main(). ¢ num Show Caller Code E
' main Show Callee Code lini
TIP: If single step (Step In) does not work, click on the Disassembly window to - # num _ _ au
bring it into focus. If needed, click on a disassembly line to step through @ dir V| Hexadecimal Display |
assembly instructions. If a source window is in focus, you will step through the .. & htns [nnnnnnn [au

source lines instead.
TIP: You can modify a variable value in the Call Stack & Locals window when the program is stopped.

TIP: This is standard “Stop and Go” debugging. ARM CoreSight debugging technology can do much better than this. You
can display global or static variables updated in real-time while the program is running. No additions or changes to your code
are required. Update while the program is running is not possible with local variables because they are usually stored in a
CPU register. They must be converted to global or static variables so they always remain in scope.

If you have a ULINKpro and ETM trace, you can see a record of all the instructions executed. The Disassembly and Source
windows show your code in the order it was written. The ETM trace shows it in the order it was executed. ETM provides
Code Coverage, Performance Analysis and Execution Profiling.

Changing a local variable to a static or global normally means it is moved from a CPU register to RAM. CoreSight can view
RAM but not CPU registers when the program is running.

Call Stack:

The list of stacked functions is displayed when the program is stopped as you have seen. This is useful when you need to
know which functions have been called and what return data is stored on the stack.

TIP: You can modify a local variable value when the program is stopped.

TIP: You can access the Hardware Breakpoint table by clicking on Debug/Breakpoints or Ctrl-B. This is also where
Watchpoints (also called Access Points) are configured. You can temporarily disable entries in this table.

Selecting Debug/Kill All Breakpoints deletes Breakpoints but not Watchpoints.

7 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

9) Watch and Memory Windows and how to use them:

The Watch and memory windows will display updated variable values in real-time. It does this through the ARM CoreSight
debugging technology that is part of Cortex-M processors. It is also possible to “put” or insert values into these memory
locations in real-time. It is possible to “drag and drop” variable names into windows or enter them manually.

Watch window:
Add a global variable: Recall the Watch and Memory windows can’t see local variables unless stopped in their function.

Stop the processor 0 and exit debug mode. @
2. In Blinky.c declare a global variable (I called it value) near line 21 like this: unsigned int value = 0;

Add the statements value++; and if (value > 0x10) value = 0;as shown here near line 93:

o bbb g2 Delay (200) ;
4. Click on Rebuild. = Click on Load ## to program the Flash. = vatuert;

94 if (value > 0x10) walue = 0;
5. Enter Debug mode. @ Click on RUN @ Recall you can set Watch and 25 SEN

Memory windows while the program is running.

Open the Watch 1 window by clicking on the Watch 1 tab as shown or select View/Watch Windows/Watch 1.

In Blinky.c, right click on the variable value and select Add value to ... and select Watch 1. value will be displayed

P e e
as shown here: Watch 1 ax

8. wvalue will increment until 0x10 in real-time. Hame . Type
TIP: You can also block value, click and hold and drag it o 000000003 unsigned int
into Watch 1 or a Memory window. ~<Enter expression> |
TIP: Make sure View/Periodic Window Update is selected. 1 Call Stack = Locals | Watch1 Memory1 |
9. You can also enter a variable manually by double-clicking under Name or pressing F2 and using copy and paste or

typing the variable.

TIP: To Drag ‘n Drop into a tab that is not active, pick up the variable and hold it over the tab you want to open; when it
opens, move your mouse into the window and release the variable.

Memory window:

1. Right-click on value and enter into the Memory 1 window or enter it manually. Select View/Memory Windows if
necessary.

2. Note the value of value is displaying its address in Memory 1 as if it is a pointer. This is useful to see what address
a pointer is pointing to but this not what we want to see at this time.

Add an ampersand “&” in front of the variable name and press Enter. The physical address is shown (0x2000_0014).
Right click in the memory window and select Unsigned/Int.

The data contents of value is now displayed as a 32 bit value.

Both the Watch and Memory windows are

X
updated in real-time. Address: [Evae EI ﬂ
7. You can modify value in the Memory

AN S

0x20000014: 00000003 00C0OB17E 00000000 ©O000000C QOOOCOO0O

window with a right-click with the mouse 0x20000028: 00000000 00000000 00000000 00000000 00000000
cursor over the data field and select Modify |oxzoc0003C: 00000000 00000000 00000000 00000000 00000000
Memory. 0x20000050: 00000000 00000000 00000000 00000000 00000000

0x20000064: 00000000 00000000 00000000 2000001C 0800dzon =]
@ Call Stack = Locals | Wateh 1 |

Memory 1

TIP: No CPU cycles are used to perform these
operations. See the next page “How It Works” for an explanation on how DAP functions.

TIP: To view variables and their location use the Symbol window. Select View/Symbol Window while in Debug mode.

Serial Wire Viewer (SWV) does not need to be configured in order for the Memory and Watch windows to operate as shown.
This mechanism uses a different feature of CoreSight than SWV. These Read and Write accesses are handled by the Serial
Wire Debug (SWD) or JTAG connection via the CoreSight Debug Access Port (DAP), which provides on-the-fly memory
accesses.

8 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

10) How to view Local Variables in the Watch or Memory windows:
Make sure Blinky.c is running. We will use the local variables from main(): num, dir and btns.
2. Locate where the three local variables are declared in Blinky.c near line 67, at the start of the main function.

Enter each of the three variables into Watch 1 window by right-clicking on them. Note it says < not in scope >
because pVision cannot access the CPU registers while running which is where value is probably located.

4. Set a breakpoint in the Blinky.c while loop. The problem will oo
stop the program and the current variable values will appear.

Mame Type

value unsigned int

Remove this breakpoint. =
v num
— @ dir

Set a breakpoint at if (btns !'= (UL << 0)) near line 82.
- W btns unsigned int

Hold down the blue USER button and start the program. The .<Enter expression>
program will stop. A btns value of 1 will display. Without _
USER pressed, a 0 will be displayed if you click on Run again, = * =" 5% 7ot | Watch3 | emary 1 |

TIP: Remember: you can set and unset hardware breakpoints on-the-fly in the Cortex-M4 while the program is running !

8. uVision is unable to determine the value of these three variables when the program is running because they exist only
when main is running. They disappear in functions and handlers outside of main. They are a local or automatic
variable and this means it is probably stored in a CPU register which pVision is unable to access during run time.

. . . . i
9. Remove the breakpoint and make sure the program is not running 6 Exit Debug mode. Q
How to view local variables updated in real-time:
All you need to do is to make the local variables num, dir and btns global where it is declared in Blinky.c !

1. Move the declarations for num, dir and btns out of main() and to the top of Blinky.c to make them global variables:
unsigned int value = 0;
int32_t num = -1;
int32_t dir = 1;
uint32_t btns = 0;
TIP: You could also make the them static ! i.e. static int32_t num = -1;
TIP: You can edit files in edit or debug mode. However, you can compile them only in edit mode.

2. Compile the source files by clicking on the Rebuild icon. They will compile with no errors or warnings.
LOAD

3. To program the Flash, click on the Load icon. ##. A progress bar will be displayed at the bottom left.

TIP: To program the Flash automatically when you enter Debug mode select Target Options EAN , select the Utilities tab and
select the “Update Target before Debugging” box.

4. Enter Debug mode. @ Click on RUN. E]‘L

Now the three variables are updated in real-time. Press and release the User button and btns will update to 0 or 1.
This is ARM CoreSight technology working.

6. You can read (and write) global, static variables and structures. Anything that stays around in a variable from
function to function. This includes reads and writes to peripherals.

7. Stop the CPU and exit debug mode for the next step. @ and @
TIP: View/Periodic Window Update must be selected. Otherwise variables update only when the program is stopped.

How It Works:

puVision uses ARM CoreSight technology to read or write memory locations without stealing any CPU cycles. This is nearly
always non-intrusive and does not impact the program execution timings. Remember the Cortex-M4 is a Harvard architecture.
This means it has separate instruction and data buses. While the CPU is fetching instructions at full speed, there is plenty of
time for the CoreSight debug module to read or write values without stealing any CPU cycles.

This can be slightly intrusive in the unlikely event the CPU and pVision reads or writes to the same memory location at
exactly the same time. Then the CPU will be stalled for one clock cycle. In practice, this cycle stealing never happens.

9 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

11) View Variables Graphically with the Logic Analyzer (LA):

We will display the global variable value you created earlier in the Logic Analyzer. No code stubs in the user code will be
used. This uses the Serial Wire Viewer and therefore does not steal CPU cycles.

1. Stop the processor Q and exit Debug mode. @

Configure Serial Wire Viewer (SWV):

Select Target Options &N or ALT-F7 and select the Debug tab. Select Settings: on the right side of this window.

Confirm SW is selected. SW selection is mandatory for SWV. ST-Link uses only SW. Select the Trace tab.

2.

3.
else is set as shown here: =TT

4. Click OK once to return to the Debug tab.

5. In the Initialization File: box: select STM32 SWO.ini from
C:\Kei\ARM\Boards\Kei\MCBSTM32C\Blinky Ulp:
You can use the Browse icon to locate and enter it. This
file configures the STM32 SWV module and default is for
SWV. You can also move this file and select it locally.

6. Click OK return to the main menu. Enter debug mode. @1

Configure Logic Analyzer:

1. Open View/Analysis Windows and select Logic Analyzer

or select the LA window on the toolbar.

TIP: You can configure the LA while the program is running.

In the Trace tab, select Trace Enable. Unselect Periodic and EXCTRC. Set Core Clock: to 168 MHz. Everything

Cortex-M Target Driver Setup

Debug Trace | Fash Download |

Core Clock: | 168.000000 MHz ¥ Trace Enable
~Trace Port Timestamp: Trace Event
Serial Wire Output - UART/NRZ W Enable Prescaler[1 = I~ CPI: Cycles per Instruction
SWO Clock Prescaler: | 21 PC Sampling I” EXC: Exception ovethead
7 Atodeteet I™ SLEEF: Sleep Cycles
a Prescaer 10246 =1 | | [1) Lod toe Lt Cycis
SWOCck:| 2000000 MHz | | [~ pesoic. Period: [<Disabled> | | I~ FOLD: Folded Instructions
I~ on Data R/W Sample I~ EXCTRC: Bxception Tracing
~ITM Stimulus Port
31 Pt 2423 Pot 1615 Pot 8 7 Pt O
Enable: | bFFFFFFFF | 7 7 2 2 o ol 7 o 0 7 o o ol o 0 2 1 o O el O 2 e P e T e
Privilege: [(x00000008 Pot31.24 ¥ Pot23.16 [Port 15.8 [~ Pot 7.0 [~
- Advanced setting
I~ Ignore packets with no SYNC
I~ Overwite CYCCNT

oK || cancal | iop

2. Click on the Blinky.c tab. Right click on value and select Add value to... and then select Logic Analyzer. You can
also Drag and Drop or enter it manually. =l
Click on the Select box and the LA Setup window appears: Currt Loge Anayzer Sgnas x|

4. With value selected, set Display Range Max: to 0x15 as shown here:

Click on Close.

Run Program: Note: The LA can be configured while the program is running.

1) Click on Run. & Click on Zoom Out until Grid is about 1 second.
2) The variable value will increment to 0x10 (decimal 16) and then is set to 0.

TIP: If you do not see a waveform, exit and re-enter Debug mode to refresh the LA. You
might also have to repower the Discovery board. Confirm the Core Clock: value is correct.

TIP: You can show up to 4 variables in the Logic Analyzer. These variables must be
global, static or raw addresses such as *((unsigned long *)0x20000000).

N I
r~Signal Display Display Rang:

Display Type: [Analog | | Max [oxrFF

Color | — || | in o |
I~ Hexadecimal Display

Display Formula (Signal & Mask) > Shit

’V.w Mask W Shift Right: |D—

Ewpart Signdl Deinions..._|

Export / Import
[mport Signal Defintors... | ‘

KA | O | Help

3) Enter the static variable btns into the LA and set the Display Range Max: to 0x2. Click on RUN and press the User

button and see the voltages below:
4)

5) Select Signal Info, Show

Cycles, Amplitude and Cursor

Logic A

to see the measuring capabilities E=]

21

of the LA. You can stop the LA
by clicking on the Stop icon in
the Update Screen box. g

value

bitns

6) Stop the CPU. o

a

1561

i

@lDisassembl\; | ﬂLogicAna\yzer

738

Min Time

Max Time

Gid |

Note the variable value stops incrementing while USER is held down. Also note how easy it is to view this effect.

Zoom | Min/Manc |Update Saeen‘ Transition ‘ Jump to I™ Signalinfo [~ Amplitude

1159655 [1575.148s | 1s |[In JOut| Al [Acto][Undo]|[Stop |[Clear | [Prev][Next | [Code |[Trace] I~ Show Cycles I~ Cursor

niRERE

15753735

Al

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit

10

Copyright © 2014 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

12) Watchpoints: Conditional Breakpoints: This does not need or use Serial Wire Viewer:

Recall STM32 processors have 6 hardware breakpoints. These breakpoints can be set on-the-fly without stopping the CPU.
The STM32 also have four Watchpoints. Watchpoints can be thought of as conditional breakpoints. The Logic Analyzer uses
the same comparators as Watchpoints in its operations and they must be shared. This means in pVision you must have two
variables free in the Logic Analyzer to use Watchpoints. Watchpoints are also referred to as Access Breakpoints.

1.

© N L A LN

10.

11.

12.

13.

14.

15.

16.
17.
18.

Use the same Blinky configuration as the previous page. Stop the program if necessary. Stay in debug mode.
We will use the global variable value you created in Blinky.c to explore Watchpoints.

The SWV Trace does not need to be configured for Watchpoints. However, we will use it in this exercise.
The variable value should be still entered in the Logic Analyzer from the last exercise on the previous page.
Select Debug in the main pVision window and select Breakpoints or press Ctrl-B.

In the Expression box enter: “value == 0x5” without the quotes. Select both the Read and Write Access.

Click on Define and it will be accepted as shown here: Click on Close.

Enter the value to the Watch 1 window if it is Breakpoints x|
not already listed. Current Breakpoints:

Open Debug/Debug Settings and select the trace Sl S i

tab. Check “on Data R/W sample” and uncheck

EXTRC.
Click on OK twice. Open the Trace Records

BRI M
window. Becouts d I P L
Click on RUN Expression: | ¥ Read v Wite
You will see value change in the Logic Analyzer Court: |1 =] E —
as well as in the Watch window. Command: | P = [Objects

When value equals 0x5, the Watchpoint will

stop the program. Define | riiselced | A | Cose | Hep |
Note the data writes in the Trace Records window
shown below. 0x5 is in the last Data column. Plus the address the data written to and the PC of the write instruction.

This is with the ST-Link. A ULINK2 will show the same window. A ULINKpro or a J-Link (black case) will show
a different display.

There are other types of expressions I

you can enter and are detailed in the Type Ovi[Nom | Addess | Data | PC [Dy| Cydes | Tmep] =l
1 3 Data Write 20000014H 00000001H 08000552H 26426159281 47.18963002

Help button m the Breakp()lnts Data Write 20000014H 00000002H 08000552H 2684619281 47.93563002

window. Not all are currently Data Write 20000014H 00ODODO3H 0B0DO592H 2726619281 4868963002

. . .. Data Write 20000014H 00000D04H 08000552H 2768615281 49543563002

1mplemented m l.lVlSlOl’l. Data Write 20000014H 00000005H 08000552H 2810615281 50.18563002

To repeat this exercise, click on RUN.
When you are finished, stop the program, click on Debug and select Breakpoints (or Ctrl-B) and Kill the Watchpoint.

Leave Debug mode.

TIP: You cannot set Watchpoints on-the-fly while the program is running like you can with hardware breakpoints.

TIP: To edit a Watchpoint, double-click on it in the Breakpoints

. | Logic Analyzer L X!
window agd its 1nf0rm.at1(.)n will be dropp'ed down into the o i | Wnme MeT G | Zom | e Toom | Semiler |ideser
configuration area. Clicking on Define will create another (S| 0s " [s0tese3s [08|]foue] [[[] e[]| [

20 H H H H H

Watchpoint. You should delete the old one by highlighting it and
click on Kill Selected or try the next TIP:

TIP: The checkbox beside the expression allows you to

value

temporarily unselect or disable a Watchpoint without deleting it. o : L |
. . ; 4509563 5 4759563 s [51 D!ZSJ:l
TIP: Raw addresses can also be entered into the Logic Analyzer. S———g .

An example is: *((unsigned long *)0x20000000)

Shown above right is the Logic Analyzer window displaying the variable value trigger point of 0x5.

11 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

13) RTX_Blinky Example Program with Keil RTX RTOS: A Stepper Motor example

Keil provides RTX, a full feature RTOS. RTX is included as part of Keil MDK including source. It can have up to 255 tasks
and no royalty payments are required. This example explores the RTX RTOS project. MDK will work with any RTOS. An
RTOS is just a set of C functions that gets compiled with your project. RTX comes with a BSD type license and source code.

NOTE: RTX Blinky supplied with MDK does not have the correct source files. This example is a two task project that
blinks a LED. Supplied with this document is an RTX Blinky that has fours tasks and lights four LEDs.

Obtain the source code for RTX Blinky\ from www.keil.com/appnotes/docs/apnt 261.asp and replace the contents in the
directory C:\Kei\ARM\Boards\ST\STM32F4-Discovery\RTX Blinky\. You can put it somewhere else if you prefer.

1.
2.
3.

7.
8.

With pVision in Edit mode (not in debug mode): Select Project/Open Project.
Open the file C:\KeiNARM\Boards\ST\STM32F4-Discovery\RTX Blinky\Blinky.uvproj.
This project is pre-configured for the ST-Link V2 debug adapter.

¥
Compile the source files by clicking on the Rebuild icon. = . They will compile with no errors or warnings.
LOAD

To program the Flash manually, click on the Load icon. ##. A progress bar will be at the bottom left.

Enter the Debug mode by clicking on the debug icon @ and click on the RUN icon. E]

The four LEDs will blink in succession simulating the signals for a stepper motor.

Click on STOP @ .

We will explore the operation of RTX with the Kernel Awareness windows.

The Configuration Wizard for RTX:

1. Click on the RTX Conf CM.c source file tab as shown below on the left. You can open it with File/Open if needed.
2. Click on the Configuration Wizard tab at the bottom and your view will change to the Configuration Wizard.
3. Open up the individual directories to show the various configuration items available.
4. See how easy it is to modify these settings here as opposed to finding and changing entries in the source code.
5. Changing an attribute in one tab changes it in the other automatically. You should save a modified window.
6. You can create Configuration Wizards in any source file with the scripting language as used in the Text Editor.
7. This scripting language is shown below in the Text Editor as comments starting such as a </h> or <i>.
See www.keil.com/support/docs/2735.htm for instructions.
8. The pVision System Viewer windows are created in a similar fashion. Select View/System Viewer.
" [#] RTX_Conf_cM.c] v X ‘ Blinkyc RTX_Conf_CM.c | - X
081 #ifndef OS5 TICE -
0 taefine 05_TICK 10000 B [Esadi | [l | I
083 #endif Option | Yalue
04 “Task Definitions
085 ‘h> - Mumber of concurrent running tasks 7
08k Number of tasks with user-provided stack]
087 - Task stack size [bytes] 200
088 hing - Check for the stack overflow ca
089 Runin privileged mode Il
090 4define OS5 ROBIN 1 J - MNumber of user timers [1}
091 fendif - -SysTick Timer Configuration
092 Timer clock value [Hz] 72000000
- Timner tick walue [us] 10000
033 <ok Round-Robin iitching v
034 = *_> - Round-Robin Timeout [ticks] 5
0% <1>» Default: &
096 #ifndef 05 _ROBINTCUT
037 #define 05 _ROBINTOUT 5
g #endif -
LL' —’I_‘ Text Editar }\Cnnﬁguralion Wizard
% Text Editor A Configuration Wizan
Text Editor: Source Code Configuration Wizard
12 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

14) RTX Kernel Awareness using Serial Wire Viewer (SWV):

Users often want to know the number of the current operating task and the status of the other tasks. This information is
usually stored in a structure or memory area by the RTOS. Keil provides a Task Aware window for RTX. Other RTOS

1 M _‘ b [RTX Tarsks aned System
companies also provide awareness plug-ins for pVision. —
Run RTX_Blinky again by clicking on the Run icon. R —
Tich. T 10,000 niSex.
2. Open Debug/OS Support and select RTX Tasks and System | S Sy ot B
and the window on the right opens up. You might have to a8
grab the window and move it into the center of the screen. e [t Lt
These values are updated in real-time using the same read L. T ey
write technology as used in the Watch and Memory windows. “3'5 E:"-*“"' ; | == Zﬁ;
Important TIP: View/Periodic Window Update must be selected ! (T It ey WEERoowm foow low
. . |3 |phesel ! Wk AN GO TR
3. Open Debug/OS Support and select Event Viewer. There is 7 |phmer ' I o0 (oo [

probably no data displayed because SWYV is not configured.

RTX Viewer: Configuring Serial Wire Viewer (SWV): v

We must activate Serial Wire Viewer to get the Event Viewer working.

1. Stop the CPU and exit debug mode. o Q ik o e

[\sTM32_SWo | e |
2. Click on the Target Options icon EA next to the target box.

Select the Debug tab. In the box Initialization File: enter \STM32_SWO.ini or use the Browse ... button. This file
configures the STM32 SWV module and is default is for SWV UART mode. This important entry is shown above:

Click the Settings box next to ST-Link Debugger. x

"Debug Trace | Flash Dowrioad |

5. In the Debug window, make sure Port: is set to SW and
not JTAG. SWV works only with SW mode. ooy MU LT AT
Trace Port Ti Trace Events
6. Click on the Trace tab to open the Trace window. 5o Vir= Outout - ART/AZ 7] | | 7 Enable Presealer.[1 v] | | ™ CPI: Cyclesper nstnction
™ EXC: Exception overhead
. SWO Clock Prescaler: 84 PC Sampling————————————— -
7. Set Core Clock: to 168 MHz and select Trace Enable. ¥ Atodeed Procar [1277 2] | | |- oo -
. . SWO Clock: 2000000 MHz o 5
8. Unselect the Periodic and EXCTRC boxes as shown: I (R R [SUREER | | [L e
™ on Data RAW Sample [~ EXCTRC: Exception Tracing
9. ITM Stimulus Port 31 must be checked. This is the ~TM St Por
. 3 Port 2423 Port 16 15 Port 8 7 Port 0
method the RTX Viewer gets the kernel awareness Enable [BFFFIFFF | FRRRRRRR RRRRRIRR PRRRRRRR RRRRRRRR
information out to be displayed in the Event Viewer. Prviege: [0:000000%8 Potsiza bl Pz 6] Pewmsl] P70
. . . . ~ Advanced setting:
It is slightly intrusive. e ST
10. Click on OK twice to return to pVision. L Onenvte CYECNT

The Serial Wire Viewer is now configured in pVision. Ok | cance el

11. Enter Debug mode and click on RUN to start the program.
12. Select “Tasks and System” tab: note the display is updated.

13. Click on the Event Viewer tab. s e o e e e =
. — : _ .

14. This window displays task events in a graphical format as :
shown in the RTX Kernel window below. You probably =) '|"' '|' i ' i |' | | R .Ii. | |
have to change the Range to about 0.2 seconds by clicking |
on the Zoom ALL and then the + and — icons.

TIP: If Event Viewer doesn’t work, open up the Trace Records and .M | e BE N
confirm there are good ITM 31 frames present. Is Core Clock b Il
correct ? This project is running at 168 MHz. o | |
Cortex-M3 Alert: pVision will update all RTX information in real- .. g
time on a target board due to its read/write capabilities as already | s s RREEE
described. The Event Viewer uses ITM and is slightly intrusive. L T

The data is updated while the program is running. No instrumentation code needs to be inserted into your source. You will
find this feature very useful ! Remember, RTX with source code is included with all versions of MDK.

TIP: You can use a ULINK2, ULINK-ME, ULINKpro, ST-Link V2 or J-Link for these RTX Kernel Awareness windows.

13 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

15) Logic Analyzer Window: View variables real-time in a graphical format:
pVision has a graphical Logic Analyzer window. Up to four variables can be displayed in real-time using the Serial Wire
Viewer in the STM32. RTX Blinky uses four tasks to create the waveforms. We will graph these four waveforms.

1. Close the RTX Viewer windows. Stop the program Q and exit debug mode. @

2. Add 4 global variables unsigned int phasea through unsigned int phased to Blinky.c as shown here:

Add 2 lines to each of the four tasks Task1 through Task4 in Blinky.c as shown 2 fdefine FI t
below: phasea=1; and phasea=0; The first two lines are shown added at lines 084 30 unsigned int phasea=0;
and 087 (just after the LED On and LED_Off function calls). For each of the four 2 Eﬁzigﬁzg o E:Z:Z‘;:gf
tasks, add the corresponding variable assignment statements phasea, phaseb, phasec 33 unsigned int phasedso:
and phased. 34 T” . : .
285 * Function 'sign:
L'_'J LOAD
4. Rebuild the project. “““< Program the Flash ##. 46]/ - - -
4".-‘T * Task 1 'phasel': Fhase L ou
|@ 45 LT — —
5. Enter debug mode =4. 49 [task void phased (void) {
|;_'L a0 for (21 o
You can run the program at this point. = 51 os_svt_wait_and (0x0001, Oxffffy:
52 LED_On (LED_4):
Open View/Analysis Windows and select Logic Analyzer or select the 53 phaseasi;
54 signal func (t_phaseB):
LA window on the toolbar. =3 LED_OFE [LED_L)
56 phasea=0; ——
Enter the Variables into the Logic Analyzer (LA): ;; } !

8. Click on the Blinky.c tab. Right click on phasea, select Add ‘phasea’
0... and finally select Logic Analyzer. Phasea will be added to the LA.

9. Repeat for phaseb, phasec and phased. These variables will be listed on the left side of the LA window as shown.
Now we have to adjust the scaling.

TIP: If you can’t get these variables entered into the LA, make sure the Trace Config is set correctly. The Serial Wire Viewer
must be configured correctly in order to enter variables in the LA.

The Logic Analyzer can display static and global variables, structures and arrays.
It can’t see locals: just make them static or global. To see peripheral registers read or write to them and enter them in the LA.
10. Click on the Setup icon and click on each of the four variables and set Max. in the Display Range: to 0x3.
11. Click on Close to go back to the LA window.
12. Using the All, OUT and In buttons set the range to 1 second or so. Move the scrolling bar to the far right if needed.

Logic Analyzer

Setup .. || Load Min Time: Max Time Grid Znnm Ende Tlace Selup M\nfMax Llpdata Screen Tlanslhnn ¥ Signallnfo ¥ Amplitude
|7 Show Cycles |7 Cursor

phasea

:| H

phazeb

v _| L—_|| : :
g 3 | ’ 5
8 EII'L
o 3 : phasec H H H H |
a B Mouse Pos Reference Point Delta | | ! ! '
3 : Time: 1464807 5 0s 1464807 5 = 0.068268 Hz| ! : : ; !
o[] |vae 1 0 1 I A N N
15.40807 5 i S N/A ' ' | 47.40807 s
2500555633 132875699, d. F1320875699 527ESE5699 7964555639

[+

4
@l[;i:a::eml)\-; \ iLog\(Aﬂalyzer

13. Select Signal Info and Show Cycles. Click to mark a place move the cursor to get timings. Place the cursor on one
of the waveforms and get timing and other information as shown in the inserted box labeled phasec:

TIP: You can also enter these variables into the Watch and Memory windows to display and change them in real-time.

TIP: You can view signals that exist mathematically in a variable and not available for measuring in the outside world.

14 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

16) ITM (Instrumentation Trace Macrocell) 1TM uses Serial Wire Viewer.

Recall that we showed you can display information about the RTOS in real-time using the RTX Viewer. This is done through
ITM Stimulus Port 31. ITM Port 0 is available for a printf type of instrumentation that requires minimal user code. After the
write to the ITM port, zero CPU cycles are required to get the data out of the processor and into pVision for display in its
Debug (printf) Viewer window. Note: the global variable value from 10) Watch and Memory Windows ... must be entered
and compiled in Blinky.c in order for this exercise to work.

1. Stop the program if it is running and exit Debug mode.
2. Open the project C:\Kei\ARM\Boards\ST\STM32F4-Discovery\Blinky\Blinky.uvproj (do not use RTX_ Blinky).

3. Add this code to Blinky.c. A good place is near line 19, just after the #include "LED.h".
#define 1TM_Port8(n) (*((volatile unsigned char *)(0xEO0000000+4*n)))

4. In the main function in Blinky.c after the second Delay(200); near line 96 enter these lines:
ITM_Port8(0) = value + 0x30; /* displays value in ASCII */
while (1TM_Port8(0) == 0);
ITM_Port8(0) = 0x0D;
while (1TM_Port8(0) == 0);
ITM_Port8(0) = Ox0A;

5. Rebuild the source files, program the Flash memory and enter debug mode.

6. Open Select Target Options EAN or ALT-F7 and select the Debug tab, and then the Trace tab.

7. Configure the Serial Wire Viewer as described on page 10. Use 168 MHz for the Core Clock.

8. Unselect On Data R/W Sample, EXCTRC and PC Sample. (this is to help not overload the SWO port)
9. Select ITM Port 0. ITM Stimulus Port “0” enables the Debug (prinftf) Viewer.

10. Click OK twice. Enter Debug mode.

11. Click on View/Serial Windows and select Debug (printf) Viewer and click on RUN.

12. In the Debug (printf) Viewer you will see the ASCII of value appear. Debug (printf) Viewer

13. As value is incremented its ASCII character is displayed, T

Trace Records

1. Open the Trace Records if not already open. Double click on it to clear it.
2. You will see a window such as the one below with ITM and Exception frames. I build Output | 3 Debug fprintf Viewer
What Is This ?

You can see the ITM writes and Data writes (value being displayed in the LA).
1. ITM 0 frames (Num column) are our ASCII characters from value with carriage return (0D) and line feed (0A) as
displayed the Data column.

2. All these are timestamped in both CPU cycles and time in seconds.

3. When you are done, stop the processor and exit debug mode.

ITM Conclusion
. . . . Type [Ovi[Num [Address | Data___| PC [oy[Cyees |

The writes to ITM Stimulus Port 0 are intrusive and are usually one m 0 e [
cycle. It takes no CPU cycles to get the data out the SAM4 m o i arrise
processor and to your PC via the Serial Wire Output pin. m : o arezdse
™ 0 0DH 375624899
TIP: It is important to select as few options in the Trace M 0 b iz
. ™ 0 0DH 375624964
configuration as possible to avoid overloading the SWO pin. Enter mi g wh pre
only those features that you really need. i 0 oo Prer
™ 0 33H 543624302
i ; i Sacaisey
™ 0 34H 52752455é
™ 0 0DH 711624963

Super TIP: ITM_SendChar is a useful function you can use to send
ITM characters. It is found in the header core.CM3.h.

15 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

17) Serial Wire Viewer (SWV) and how to use it:
1) Data Reads and Writes: (Note: Data Writes but not Reads are enabled in the current version of pVision).
You have already configured Serial Wire Viewer (SWV) on page 13 under RTX Viewer: Configuring the Serial Wire Viewer:

Now we will examine some of the features available to you. SWV works with pVision and ST-Link V2, ULINK2/ME,
ULINKpro or a Segger J-Link V6 or higher. SWV is included with MDK and no other equipment must be purchased.

Everything shown here is done without stealing any CPU cycles and is completely non-intrusive. Your program runs at full
speed and needs no code stubs or instrumentation software added to your source code. Screens are shown using a ST-Link.

1. Use RTX Blinky from the last exercise. Enter Debug mode and Run the program if not already running.

2. Select View/Trace/Records or click on the Trace icon e - and select Records. 5‘:
Exceptions
3. The Trace Records window will open up as shown here: BIEE
4. The ITM frames are the data from the RTX Kernel Viewer which uses Port 31 as shown under Num. here:
5. To turn this off, select Debug/Debug Settings and click on the Trace tab. Unselect ITM Stimulus Port 31.
TIP: Port 0 is used for Debug printf Viewer. =
CONET Tupe [l tum [Addess [Data | PC [ob] Coces | Timelg |2l
Unselect EXCTRC and Periodic. o o e AT P
ITH i 0EH = E3213 0.00041202
ITH il FFH * 65219 0.00041202
SeleCt On Data' R/W Sample' Drata wiite 200000184 00000001H A E3219 0.00041202
. . ITH i 0EH 13450873 0.08006472
ITH il FFH 13451223 0.08006680
N Clle on OK tWICe to retum' ITH i 0z2H 840103940 0.50008512
. . ITh ki 0EH 84011548 0.50006874
TIP: If the SWV trace fails to work properly after this I a FFH Ml osomesy
. ITH i 0EH 97480873 0.568006472
- ITh ki FFH 97451223 0.58006680
change, exit and re-enter Debug mode. I z P e e
9. C(Click the RUN 1 s i T oworcd oo o 1 Booosees
: 1Ck on € 1con. ITH kil 06H ® 168015963 1.00003502
. . ITH A FFH A 162015963 1.00003502
10. Double-click anywhere in the Trace records I 3t 05 180450873 1 B00EAT2
~ lear it i 5 oo Eomce 1o
Wlndow tO clear 1t. ITh ki 0zH 252011650 1.50006935 LI
I1. Only Data Writes will appear now. x
TIP: You could have right clicked on the Trace Records Tipe Ovf[Nom| Addess | Data | PC__ [Diy| Cydes | Tmel] |~
. . Data Write 2000001CH D0000000H 080001CAH 1 0.00000002
window to filter the ITM frames out. Unselecting a feature Data Wirts 2000000CH 0OODODOTH 0BOOO7SAH 11501 000020537
. . . Data Write 2000001CH 00000000H 0800078EH 13445868 0.24017618
is better as it reduces SWO pin traffic and therefore trace Data Virte 2000001CH DODDODDTH ~ 0BODDTEH BADDNI 150017739
Data Write 2000001CH 00000000H 0800078EH 97443866 174017618
Data Write 2000001CH D000000TH 08000754H 168005934 3.00017739
OVGI‘ﬂOWS : Data Write 2000001CH 00000000H 0800078EH 181443866 324017618
What is happening here ? E———————tm Daa vinte J00001CH 000000H 080007EEM ol
atis pp g) Data‘:Vme 2000001CH 0000000 TH DSDDD}SAH 336009934 SE}DDW%’TSB
. . . Data Write 2000001CH D0000000H (0800078EH 343445868 £.24017618
1. When variables are entered in the Logic Analyzer Data Viite 2000001CH ODOODIDIH DBDOO7S4H L0009 750017739
. . Data Write 2000001CH D0000000H (0800078EH 433445868 774017618
(remember phasea ?), the reads and/or writes will Data Wite 2000001CH 0DODODOTH 0B000754H 504009934 9.00017739
. 4 Data Write 2000001CH 00000000H 0800078EH 517449868 9.24017618
Data Write 2000001CH 0000000 TH 08000754H 588009934 1050017739
appear mn Trace Records' D:t‘a an‘e 2000001CH 00000000H 0800078EH 601443866 1074017618
2. The Add 1 h here the variable i Deta Ve X000/CH Oo00000D 0600070 s p20TEIE
: € ress column shows where t € variable 1s. Dat: ’:Vm: 2000001CH D0000001TH DEDDD}MH 756009934 TBBDDT:’TBB LI
3. The Data column displays the data values written S
ymbols x
to phasea. i -
4. PC is the address of the instruction causing the Madule / Name Locatian Type
writes. You activated it by selecting On Data R/W I8 SRO/CMYIE Time.c Module]
Sample in the Trace configuration window. & SRC/CM/ Event.c Module
T SRC/CM/rt_Task.c Madule
5. The Cycles and Time(s) columns are when these EN\
events ha ened. 0x20000013 unsigned int
pp 0x2000001C unsigned int \
TIP: You can have up to four variables in the Logic 0%20000020 unsigned int J
Analyzer and subsequently displayed in the Trace Records 0x20000024 ;’::g”‘,t./
WindOW 2}(_20000028 ———
: 0x2000002C Q5_TID
TIP: If you select View/Symbol Window you can see where 020000030 05.TID r
the addresses of the variables are located. Qx20000054 o 1D

Note: You must have Browser Information selected in the Options for Target/Output tab to use the Symbol Browser.

TIP: ULINKpro and Segger J-Link adapters display the trace frames in a slightly different style trace window. The J-Link
currently does not display Data writes.

16 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

2) Exceptions and Interrupts:

The STM32 family using the Cortex-M4 processor has many interrupts and it can be difficult to determine when they are
being activated and how often. Serial Wire Viewer (SWV) on the STM32 family makes this task easy.

1. Stop the RTX Blinky example program. Be in Debug mode. Open Debug/Debug Settings and select the Trace tab.
2. Unselect On Data R/W Sample, PC Sample and ITM Ports 31 and 0. (this is to minimize overloading the SWO port)
3. Select EXCTRC as shown here: |
. . Debug Trace I
4. Click OK twice.
. . Core Clock: | 168.000000 pHz ¥ | Tirace Eratle
5. Double click on Trace Records to clear it. P st S
TIP: If the SWYV trace fails to work properly after this Sere Wie Qupl-LARTARZ 2| {F Erddle a1 7] :: e e
. . : Exception overhear
change, exit and re-enter Debug mode. SWA Clack Presealer [04 PCSamping————————1 | [G| EEP: Sleep Cyckes
. ¥ Autodetact Prescaler [102476 7| ™ L5U: Load Stare Uit Cycles
6. Click RUN to start the program. SWO Clock:| 2000000 MHz | | = peridic Period: [<Disableds | | [FOLD: Fokded Insictions
7. You will see a window similar to the one below [enData i Same il
1 1 1 i~ ITH Stimulus Port;
with Exceptions frames displayed. e N Pat 2422 Pat 1615 Pol 8 7 Pt O
P Enable: |D7FFFFFFE | MWVIVVIPVEY VRRRVIVY FVVVVRY VERERRRT
'What IS Happenlng . Privilege: | 000000008 Port 3124 [Part 2316 Port 15.8 [~ Pat7.0 [
1. You can see two exceptions happening. | Addvanced setiing
. ™ lgnore packets with no SYNC
= Entry: when the exception enters. I™ Overwits CYCENT
= Exit: When it exits or returns. T e
= Return: When all the exceptions have returned
to the main program. This is useful to detect tail R >
L. prog : Type Ovf | Num Address | Data | FC [y | Cyces | Timels B
chalnmg. Exception Entry 15 3645281162 65.09430646
Exception Exit 15 3645281243 65.09430970
2. Num 11 is SVCall from the RTX calls. Beosnter GEIE G0
Exception Exit 15 3646961336 65.12430957
Num 15 is the Systick timer. =l L g
Exception Exit 15 3648641520 65.15431286
1 Exc Rety 3648641528 65.15431300
4‘ In my example you can see one data erte from Dataeex'?i’l_le o 2000001CH 00000D00H X 3648643664 65.15435114
1 Exception Retum X X 3648643664 6515435114
the Loglc Analyzer Exn:eamn Estlry 15 3650321163 65.18430648
. . . Exception Exit 15 3650321397 65.18431066
Note everything is timestamped. ot 8 g
. . Exception Exit 15 3652001407 6521431084
6. The “X” in Ovf is an overflow and some data was Exceptan Reun] TOUIS 6521431088
. . eption Entry .
lost. The “X” in Dly means the timestamps are |&=gz oy
delayed because too much information is being
fed out the SWO pin. Always limit the SWV features to only those you really need.
TIP: The SWO pin is one pin on the Cortex-M4 family
. . . =] 3 @ V¥ EXCIRC Exception Tracin ¥ Timestamps Enable
processors that all SWV lnformatlon ls fed OUt' There are Num | Name Count iotalTlme ngTlmeIn MExl\m:In Min Time Out | Max Time Qut | First Time [s] Last Time [s]
limitations on how much information we can feed out this == ’ o 2
one pin. These exceptions are happening at a very fast 3 |Rararaut 0 o
rate. pVision easily recovers gracefully from these ER L s
overflows. Overflows are shown when they happen. EEN T I [155300014773 |167500014773
Using a ULINKpro helps reduce overruns. 12 [penasv 0 o
15 SysTick 12316 15171 ms |1.071 us 3310 us 9997 ms 9.999 ms 155263008785 |1675.78008785
16 WWDG_IRQ 0 0s -

1. Select View/Trace/Exceptions or click on the
Trace icon and select Exceptions.

2. The next window opens up and more information about the exceptions is displayed as shown below:

Note the number of times these have happened under Count. This is very useful information in case interrupts come

too fast or slow.

ExtIRQ are the peripheral interrupts.

You can clear this trace window by double-clicking on it.

6. All this information is displayed in real-time and without stealing any CPU cycles or stubs in your code !

TIP: Num is the exception number: RESET is 1. External interrupts (ExtIRQ), which are normally attached to peripherals,
start at Num 16. For example, Num 41 is also known as 41-16 = External IRQ 25. Num 16 =16 — 16 = ExtIRQ 0.

17

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit

Copyright © 2014 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

3) PC Samples:

Serial Wire Viewer can display a sampling of the program counter.

SWV can display at best every 64™ instruction but usually every 16,384 is more common. It is best to keep this number as
high as possible to avoid overloading the Serial Wire Output (SWO) pin. This is easily set in the Trace configuration.

1. Open Debug/Debug Settings and select the Trace tab.
2. Unselect EXCTRC, On Data R/W Sample and select Periodic in the PC Sampling area.
3. Click on OK twice to return to the main screen.
4. Close the Exception Trace window o | | — : :I_I
Type Owf | Murn Address Data FC [y Cycles Time(s -
and leave Trace Records open. PC Sample DBON0SEAH 1 000000001
Double-click to clear. PC Sample 08000554H 16385 000009753
PC Sample 03000554H 32783 0.00079505
: : : PC Sample 030005584H 49153 0.00029258
5. Click on RUN and this window P Sample DBIN0S5AH B537 000039010
opens: PC Sample DB00SEAH 81921 000048762
PC Sample 03000554H 98305 0.00058515
6. Most of the PC Samples in the o I
. ample .
PC Sample DB00SEAH 147457 0.00087772
exalmpl.e Shown are 0X0040—05E2 PC Sample 03000554H 163841 0.00037524
which is a branch to itself in a loop PL Sample 08000554H 180225 0.00107277
. PC Sample DB000SEAH 196609 0.00117023
forever routine. PC Sample DB00SEAH 212993 0,001 26782
. PC Sample 03000554H 229377 0.00136534
Note: the exact address you get PC Sample 02000554H 245761 0.001 46286
PC Sample DB000SEAH 2145 000156039
depequ on the source code and the PC Sample DB00SEAH 278529 000165741
compller settlngs. PC Sample 05000554H 234913 0.00175543
PC Sample 030005584H 1287 0.00185296 LI
7. Stop the program and the
Disassembly window will show this Branch as shown below:
8. Not all the PCs will be captured. Still, PC Samples can give you some idea of where your program is; especially if it
is not caught in a tight loop like in this case.
9. Set a breakpoint in one of the tasks. A _ — _ _
154: /% This function is called when the user timer has expired. Paraweter L
. 155: /% 'info' holds the wvalue, defined when the timer was created. L7
10. Run the program and when the breakpoint 155
. . . 157: /% HERE: include optional user code to be executed on timeout. */
is hit, you might see another address at the oxooaonseo Eroe | moP
. 0x004005E2 E7FFE B 0Ox004005E2
bottom of the Trace Records window. See e s i
the screen below: i B
11. Scroll to the bottom of the Trace Records window and you might (probably not) see the correct PC value displayed.
Usually, it will be a different PC depending on when the sampling took place.
12. To see all the instructions executed, you can use the ETM instruction trace with a ULINKpro.
13. Remove the breakpoint.
14. Stop the program. Dy ‘
p p g 116: ¢
15' Leave Debug mode. 11; = Task 4 'phaseD': Phase D output .y
119: task void phaseD (void) {
DXDDQDDTE 2000 HOVS ro, #0x00
0x004007C4 4978 LDR ri1, [pe,#480] : BOx00400945
0x004007C6 6008 STR ro, [ri,#0x00]
_EIXUEIQUUTCE ETET E 0x00400794
4
(] Abstractot * [2] Blinky.c x | [£] R ConfcM.c | [F] LEDc |
093 os_evt_wait_and (0x0001, Dxffff); [+ wait for an event Flag 0x0001 +/
09| LED_On (LEDB): |
ggg 2:;3_;;‘; tep[Toee [oOv[Mum[Adhess [Deta | PC [Ob| Cycks | Tmel |-l
097 LED_Off (LED E): |FCSample 004005 2H BE348301159 1358.56720561
a8 Phaseh = 0f PC Sampls 004005E2H 86348317543 135856746161
ms | P 2arcle SCOES el |aasrered
100 | PL Samdls 004005E2H 86948366635 1358 56622961
o - PL Sample 0D4005E2H 86343383079 135856948561
102F] 7 # PC Sample 004005E 2H 86348333463 1356.56874161
103 L * PC Sample 004005E2H 86940415847 1358.56899761
104 - PC Sample 004005E 2H BE948432231 1358, 56925361
105(]__task veid phasec | |PCSanpls 004005E2H 86340448615 135056950951
et e oo pmem i
107 os_eve_wait_and |po -.aam;e 004005E2H 96948497767 135857027761
108 LED_On (LED_C}: |PCSample N04005E 2H GEMESIAI5) 135857053361
103 phasec = 1; PC Sample 004005E 2H 86948530535 1358.57078961
110 signal_func (t_p |PCSample 004005 2H BE348546919 1358.57104561
111 LED Off (LED C}; PC Sample 004005E 2H 86948563303 135857130161
.anz phagec = o PC Sample 004005E2H 86948579687 1358.57155761
13 ' PC Sample 004005E2H BE348556071 135657181361
14y PC Sample 00400F72H 86948612455 1356.572065961 j
18 -
11611/
17 * Task 4 'phasel': Phase D output
118 i
18 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

18) Serial Wire Viewer (SWV) Configuration window: (for reference)

The essential place to configure the trace is in the Trace tab as shown below. You cannot set SWV globally for pVision. You
must configure SWV for every project and additionally for every target settings within a project you want to use SWV. This
configuration information will be saved in the project. There are two ways to access this menu:

A.

1)

2)

3)
4)

5)

6)

7)

In Edit mode: Select Target Options #N or ALT-F7 and select the Debug tab. Select Settings: on the right side of
this window and then the Trace tab. Edit mode is selected by default when you start pVision.

In Debug mode: Select Debug/Debug Settings and then select the Trace tab. Debug mode is selected with @ .

Core Clock: The CPU clock speed for
SWV. The CPU speed can be found in

Debug Trace | Flash Downloadl

Cortex-M Target Driver Setup

x|

your startup code or in Abstract.txt. It is
usually called SYSCLK or Main Clock. 1 Core Elock:l £4.000000 pHz 2 ¥ Trace Enable
This must be set correctly for all 3 Trace Por TI' g e Evits
ERT - = ¥ Enatl Prescaler[1 =] : i
adapters eXCCpt ULINKpI’O ISenaI wire Output - UART /MEZ J nable rescaler: |1 II: E;l[_}[:;cles ?eflnstruhcno;
. 5w Clock Prescaler: I 55 PC Sampling————————————— b EE I G
Trace Enable: Enables SWV and ITM. I Autadtsct a = [~ SLEEP: Slesp Cycles
1 1 Hastes geses s I [~ L5U: Load Store Unit Cycles
It can only be changed in Edit mode. 5D Clock: | 1169638 WH ! =l y
ThlS dOGS not affect the Watch and EEE . 8 [~ Periodic Periad: lm [~ FOLD: Folded Instructions
M . d d 1 d t ™ onData R/ Sample [~ EXCTRC: Exception Tracing
emory window display updates.
.. . - TH Stimulus Part a b
Trace Port: This is preset for ST-Link. 6 A Pt 2423 Pt 1615 Pat 8 7 Fot D
) . . T N v’ v v o v vl o v o o o v ol o oo o o o o ol o o o o e
Timestamps: Enables timestamps and Privlege: [000000008 Pot31.24 ¥ Pon23.16 Poit15.8 [Pot7.0 [
selects the Prescaler. 1 is the default.
PC Sampling: Samples the program
counter: Lok | [cenea |

a. Prescaler 1024*16 (the default) means every 16,384™ PC is displayed. The rest are not collected.
b. Periodic: Enables PC Sampling.

On Data R/W Sample: Displays the address of the instruction that caused a data read or write of a variable
listed in the Logic Analyzer. This is not connected with PC Sampling but rather with data tracing.

ITM Stimulus Ports: Enables the thirty-two 32 bit registers used to output data in a printf type statement to
uVision. Port 31 (a) is used for the Keil RTX Viewer which is a real-time kernel awareness window. Port 0 (b) is
used for the Debug (printf) Viewer. The rest are currently unused in pVision.

e Enable: Displays a 32 bit hex number indicating which ports are enabled.

e Privilege: Privilege is used by an RTOS to specify which ITM ports can be used by a user program.

Trace Events: Enables various CPU counters. All except EXCTRC are 8 bit counters. Each counter is cumulative
and an event is created when this counter overflows every 256 cycles. These values are displayed in the Counter
window. The event created when a counter wraps around is displayed in the Instruction Trace window.

a. CPI: Cycles per Instruction: The cumulative number of extra cycles used by each instruction beyond the
first, one including any instruction fetch stalls.

b. Fold: Cumulative number of folded instructions. These results from a predicted branch instruction where
unused instructions are removed (flushed) from the pipeline giving a zero cycle execution time.

c. Sleep: Cumulative number of cycles the CPU is in sleep mode. Uses FCLK for timing.
EXC: Cumulative cycles CPU spent in exception overhead not including total time spent processing the
exception code. Includes stack operations and returns.
LSU: Cumulative number of cycles spent in load/store operations beyond the first cycle.
EXCTRC: Exception Trace. This is different than the other items in this section. This enables the display

of exceptions in the Instruction Trace and Exception windows. It is not a counter. This is a very useful
feature to display exception events and is often used in debugging.

TIP: Counters will increment while single stepping. This can provide some very useful information. You can read these
counters with your program as they are memory mapped.

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit

19

Copyright © 2014 ARM Limited or its affiliates. All rights reserved
www.keil.com/st

19) DSP SINE example using ARM CMSIS-DSP Libraries:

ARM CMSIS-DSP libraries are offered for ARM Cortex-M3 and Cortex-M4 processors. DSP libraries are provided in MDK
in C:\KeilARM\CMSIS. README.txt describes the location of various CMSIS components. See www.arm.com/cmsis and
forums.arm.com for more information. CMSIS is an acronym for Cortex Microcontroller Software Interface Standard.

This example creates a sine wave with noise added, and then the noise is filtered out. The waveform in each step is displayed

in the Logic Analyzer using Serial Wire Viewer.

This example incorporates Keil RTX RTOS. RTX is available free with a BSD type license. RTX source code is provided.
To obtain this example file, go to www.keil.com/appnotes/docs/apnt 261.asp Extract DSP to ...\STM32F4-Discovery\.

1. Open the project file sine: C:\Kei\ARM\Boards\ST\STM32F4-Discovery\DSP\sine.uvproj

2. Build the files. =) There will be no errors or warnings.

LOAD

3. Program the STM32 flash by clicking on the Load icon: ## Progress will be indicated in the Output Window.

4. Enter Debug mode by clicking on the Debug icon. @ Select OK if the Evaluation Mode box appears.

Click on the RUN icon. & Open the Logic Analyzer window. . =J

6. Four waveforms will be displayed in the Logic Analyzer using the Serial Wire Viewer as shown below. Adjust
Zoom Out for an appropriate display. Displayed are 4 global variables: sine, noise, disturbed and filtered.

TIP: If one variable shows no waveform, disable the ITM Stimulus Port 31 in the Trace Config window.

7. The project provided has Serial Wire Viewer configured and the Logic Analyzer loaded with the four variables.

Logic Analyzer

[save .| [0849623s [E271739s | 02s

-32768
79.20739s

(B)

ISetup I Load ... Min Time Mz Time Grid Zoom Code Trace Setup Min/Max Update Screen

| Show |

| Show |

| Auto H Undo |

81.00739s

‘ Stop |

Transition

™ Signal Info
™ Show Cycles ™ Cursor

I~ Amplitude

82997795 3?5 |

2

»

[
@Dlsassembly | ﬂ Logic Analyzer

8. Open the Trace Records window and the Data Writes to the four variables are listed as shown here:

9. Leave the program running. x|

10. Close the Trace Records window. | Type [ovi[Mum| Adess | Dats | PC__[Dy| Gobs | Tme |-
Data Wiite 20000000H 2C20H 00400252H 9741265867 101.47151945
. ; ‘o di Data Witte 20000002H FOS1H D0400280H X 5741274850 10147161302
TIP: The ULINKpro trace dlsplay 18 dlffer§nt Data Wiite X 20000006H Fa26H DD4D02CEH X 9741274850 101.47161302
and the program must be stopped to update it. Data Wiite 20000000H 2EF4H 00400252H 9741745582 101.47651648
Data Write 20000002H FSCEH 00400280H X 9741754550 10147660990
: : : Data Wiite X 20000006H F&FFH DD4D02CEH X 9741754550 101.476609%0
The Watch 1 window will display the four Data Wite 20000000H 318CH 00400252H 9742225305 10148151359
Variables updating in real tlme as Shown Diata Write 20000002H FC15H 00400280H * 5742234332 101.48160762
Data Wiite X 20000006H FAEZH DD4D02CEH X 9742234332 101.48160762
below: Data Wite 20000000H 33F1H 00400252H 9742705028 10148651071
Data Wiite 20000002H 02COH 00400280H X 5742714032 10148660450
Data Wiite X 20000006H FECBH DD4D02CEH X 9742714032 101.48660450
Data Wiite 20000000H 3621H 00400252H 9743184839 101.49150874
_____ Data Wiite 20000002H 0927H 00400280H X 9743193814 10149160223
' Data Wiite X 20000006H 0287H DD4D02CEH X 9743193814 101.49160223
----- @ noise Data Write 20000000H 321AH 00400252H 9743664482 101.49650502
----- @ disturbed Data Wiite 20000002H DEASH 00400280H X 9743673432 10149659825
..... @ filtered Datz Wiite X 20000006H 06A2H D4D02CEH X 9743673432 10149659825
Data Write 20000000H 33DAH 00400252H 9744144157 101.50150205

----- <Enter expression> Datz Write 20000002H 12BAH 00400280H X 9744153214 10150159598 o |

20 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit

www.keil.com/st

Signal Timings in Logic Analyzer (LA):

1. Inthe LA window, select Signal Info, Show Cycles, Amplitude and Cursor.

Rl

| Logic Analyzer

Click somewhere in the LA to set a reference cursor line.

Update Screen

Click on STOP in the Update Screen box. You could also stop the program but leave it running in this case.

Note as you move the cursor various timing information is displayed as shown below:

TEr=me ¥ Signallnfe M Amplitude

| stent |

¥ Show Cycles W Cursor

Delta

1.525042 5 = 0.65572 Hz

40769 T
19945155
1914734372

RTX Tasks and System:

ISetup | Load Min Time Maxx Time Grid Zoom Code Trace Setup Min,/Maz
Save |19.550155 | EI | Shaow | |Show | Auto || Undo |
20000 | | . .
a . . .
‘m
-20000
o 000
.
2
-7000
T 32767 :
2 .
ki :
-32768 71760 _d- 40769 :
. disturbed
@ 2767 | ; Maouse Pos Reference Point
= | . Time: 14,25515 5 1273011 5
= ; Value: -21260 19509
22788 |[5264 PC 5: N/A N/A
11.94515s 1273011 s (14755755, d. 1576047 s] 0993155
_| 1146734372 1222050333 1368494372 _d. 146404035]530734372
4
@Disassembly QLogicAnalyzer

Click on Start in the Update Screen box to resume the collection of data.

Open Debug/OS Support and select RTX Tasks and System. A window similar to below opens up. You probably

Note this window does not update: nearly all the processor time is spent in the idle daemon: it shows it is Running.

6.
have to click on its header and drag it into the middle of the screen.

7.
The processor spends relatively little time in other tasks. You will see this illustrated clearly on the next page.
Set a breakpoint in one of the tasks in DirtyFilter.c by clicking in the left margin on a grey area.

9. Click on Run and the program will stop here and the Task window will be updated accordingly. Here, I set a
breakpoint in the noise _gen task:

10. Clearly you can see that noise_gen was running when the breakpoint was activated.

11. Remove the breakpoint.

TIP: You can set hardware breakpoints while the
program is running.

TIP: Recall this window uses the CoreSight DAP
read and write technology to update this window.
Serial Wire Viewer is not used and is not required
to be activated for this window to display and be
updated.

The Event Viewer does use SWV and this is
demonstrated on the next page.

RTX Tasks and System x

[=)-Tasks

Property Value
[=)-System

Timer Number:

0

Tick Timer:

10.000 mSec

Round Robin Timeout:

Stack Size:

Tasks with User-provided Stack:

Stack Overflow Check:

Task Usage:

Available: 7, Used: 5

User Timers:

Available: 0, Used: 0

Mame
255 |os_idle_demon

Priarity State Delay Event Value Event Mask Stack Load

=)

& syne_tsk

‘Wait_DLY 1

filter_tsk

Wait_AND 0x0000 00001

disturb_gen

Wait_AND 0x0000 0x0001

noise_gen

00000 0x0001

[w [;

sine_gen

MERRaE

Wait_AND

0x0000 0x0001

21

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit

Copyright © 2014 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

Event Viewer:

1. Stop the program. Click on Setup... in the Logic Analyzer. Select Kill All to remove all variables. This is necessary
because the SWO pin will likely be overloaded when the Event Viewer is opened up. Inaccuracies might occur. If
you like — you can leave the LA loaded with the four variables to see what the Event Viewer will look like.

2. Select Debug/Debug

zjftisg& T S|[OS [s [0 o 1| s | S | st | e e |- rer
3. ick on the Trace tab. |
4. Enable ITM Stimulus Port Al Tosks X X X{H’})(X X)(j()(j({zas}

31. Event Viewer uses this | : ‘ : :

to collect its information. TTREEIE | | | | | | | | | | | |
o) L
7. Open Debug/OS Support , Aebeen® | | | | | | | | | | | |

and select Event Viewer. ! e 1 | | | | | | | | | | | |

The window here opens up: . 3 3 : 5
8. Note there is no Task 1 ayme sk) | | | | | | | | | | | | |

listed. Task 1 is main_tsk 1 : : : : : : ' ' '

and is found in DirtyFilter.c . e (229 _

near line 208. It runs some | S5.4693 5552932 55599‘}_?'

RTX initialization code at
the beginning and then deletes itself with os_tsk delete self(); found near line 195.

Important TIP: If the SWV trace fails to work properly after this change, exit and re-enter Debug mode.

TIP: If Event Viewer is blank or erratic, or the LA variables are not displaying or blank: this is likely because the Serial Wire
Output pin is overloaded and dropping trace frames. Solutions are to delete some or all of the variables in the Logic Analyzer
to free up some bandwidth.

ULINKpro is much better with SWO bandwidth issues. These have been able to display both the Event and LA windows.
ULINKpro uses the faster Manchester format than the slower UART mode that ST-Link, ULINK?2 and J-Link uses.

ULINKpro can also use the 4 bit Trace Port for faster operation for SWV. The Trace Port is mandatory for ETM trace.

9. Note on the Y axis each of the 5 running tasks plus the idle daemon. Each bar is an active task and shows you what
task is running, when and for how long.

10. Click Stop in the Update Screen box.
11. Click on Zoom In so three or four tasks are displayed.

12. Select Cursor. Position the cursor over one set of bars and click once. A red line is set here:

13. Move your cursor to the right over the
next set and total time and difference are
displayed.

Load. .. | Min Time Max Time Grid

Zoom

[l

Code | Trace Update Screen

S, I _MI m Clear

Transition

IV Cursor [~ TaskInfo
|_ Shaw Cydes

.. ||[p-762635ms [2499017 | 2ms
| - - =

14. Note, since you enabled Show Cycles, the : | S S S R R N | §
total cycles and difference is also shown.

:d'ha

The 10 msec shown is the SysTick timer value.
This value is set in RTX_ Conf CM.c. The next
page describes how to change this.

TIP: ITM Port 31enables sending the Event
Viewer frames out the SWO port. Disabling this
can save bandwidth on the SWO port if you are not
using the Event Viewer.

ldle (2.. sync_Is...filter_tsk ... disturb... noise_g... sine_ge. All Tasks | &
2
o]

=

24 56468 5 2457017s 2838075, d 10.03186me
_Izaﬁsmsm? 2357135817 9 7398038937, d. 963020)
‘

22 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

Event Viewer Timing:
1. Click on Zoom In until one set of tasks is visible as shown below:
2. Enable Task Info (as well as Cursor and Show Cycles from the previous exercise).
3. Note one entire sequence is shown. This screen is taken with ST-Link with LA cleared of variables.
4. Click on a task to set the cursor and move it to the end. The time difference is noted. The Task Info box will appear.

TIP: If the Event Viewer does not display correctly, the display of the variables in the Logic Analyzer window might be
overloading the SWO pin. In this case, stop the program and delete all variables (Kill All) and click on Run.

The Event Viewer can give you a good idea if your RTOS is configured correctly and running in the right sequence.

load... || MinTime MaxTme Grid Zoom Code Screen | Transiton |
Cursar [V Task Info
— ” 7731286 ms | 4343865 | 0.ims |[in] out| Al show Clear || Prev| Next||[% show cydes
All Tasks Idle (255): @ *{2} ‘de\e (d55)
— (lsine_gen (Hidisturb_gen E)4)] T

fitter_tsk {2)

disturb_gen (3}

noise_gen (4)

sine_gen (5)

sync._tsk (§) E 3 E E E E sine_gen (5} Min Max Average Called

- [0x030002f1] 40.71429 us 0.105 ms 0.104571 ms 436
- - - - : : : Time: Mouse Pos Reference Point
o= =5 _ | : : e ==
43139255 4314561 s[4.3146755, d.0.114ms 43158255

_I 30197473 30201925 (30202723, d: 798| 302“]773 _I
« »

SysTick Timer Changing:

Stop the processor 0 and exit debug mode. @1

2. Open the file RTX Conf CM.c from the Project window. You can also select File/Open in
C:\Kei\ARM\Boards\ST\STM32F4-Discovery\DSP.

3. Select the Configuration Wizard tab at the bottom of the window. See page 12 for an explanation on how the Wizard
works.

[#] RTX_Conf.STM32F4.c* | [*] DirtyFitter.c |

4. This window opens up. Expand SysTick Timer Configuration. | |
Al Al
5. Note the Timer tick value is 10,000 usec or 10 msec. st — =
6. Change this value to 20,000. Extion : | Value
[#]-Task Configuration

TIP: The 5,376,000 is the CPU speed. The Discovery board has a 8 MHz [=}-SysTick Timer Configuration

crystal. This program was designed for 168 MHz with a 25 MHZ crystal. Timer clock value [Hz] 53760000
Therefore it runs 8/25 slower than designed for. The PLL is configured in Timer tick value [us] 10000
CMSIS file system_stm32f4xx.c and is easily modified. [#-System Configuration

7. Rebuild the source files and program the Flash.

Enter debug mode @1 and click on RUN .

When you check the timing of the tasks in the Event Viewer window as you did on the previous page, they will now
be spaced at 20 msec.

TIP: The SysTick is a dedicated timer on Cortex-M processors that is used to switch tasks in an RTOS. It does this by
generating an exception 15. You can view these exceptions in the Trace Records window by enabling EXCTRC in the Trace
Configuration window.

1. Set the SysTick timer back to 10,000. You will need to recompile the source files and reprogram the Flash.
This ends the exercises. Thank you !

Next is how to make a new project from scratch, how ETM trace works and Keil product and contact information.

23 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

20) Creating your own project from scratch: Using the Blinky source files:

All examples provided by Keil are pre-configured. All you have to do is compile them. You can use them as a starting point
for your own projects. However, we will start this example project from the beginning to illustrate how easy this process is.
We will use the existing source code files so you will not have to type them in. Once you have the new project configured;
you can build, load and run a bare Blinky example. It has an empty main() function so it does not do much. However, the
processor startup sequences are present and you can easily add your own source code and/or files. You can use this process to
create any new project, including one using an RTOS. This is for a STM32 processor and can be used for a Cortex-M4.

Create a new project called Mytest:

1. With pVision running and not in debug mode, select Project/New pVision Project...

2. In the window Create New Project that opens, go to the folder C:\Kei\ARM\Boards\ST\STM32F4-Discovery.
Create a new folder and name your project:

3. Right click inside this window and create a new folder by selecting New/Folder. I named this new folder FAE.

4. Double-click on the newly created folder “FAE” to enter this folder. It will be empty.

5. Name your project in the File name: box. I called mine Mytest. You can choose your own name but you will have to

keep track of it. This window is shown here: _ i
|

6. Click on Save-. G(:)vl ~ Keil ~ ARM ~ Boards ~ 5T ~ 5TM32F4-Discovery = FAE v 23| search Fae Mi]_l
Select your processor: ‘ —— = - @
7. The Select Device for “Target 1” opens up as - = [oatemoited | Type [5=
shown at the bottom of this page: o o tems mateh you search,
8. This is the Keil Device Database® which lists STHz2 Discovery
all the devices Keil supports. You can create s
your own if desired for processors not released STHzz Dacavery |
STM32F4-Discovery
yet. STM32L152-EVAL
9. Locate the ST directory, open it and select a o
STM32F415ZG (or the device you are using). i
Note the device features are displayed. sazioeeia x| 4| ' o
10. Select OK. = e
.. Save as type: [Project Files (*.uvproj) -
uVision will configure itself to this device. e =
Select the startup file: < e Fokders Cancel

A

11. A window opens up asking if you want to
insert the default STM32 startup file to your project. Click on “Yes”. This will save you some time.

12. In the Project Workspace in the upper left hand of nVision, expand the folders Target 1 and Source Group 1 by
clicking on the “+” beside each folder.

13. We have now created a project called Mytest with the target hardware called Target 1 with one source assembly file
startup_stm32f4xx.s and using the STM32F4 processor you chose.

TIP: You can create more target hardware configurations and easily select them. This can include multiple Options settings,
simulation and RAM operations. See Projects/Manage/Components

Rename the Project names for convenience: chu |
14. Click once on the name “Target 1” (or twice if
not already highlighted) in the Project VG SR
. Device: STM3ZF4152G
Workspace and rename Target 1 to something oot
oolset: ARM
else. I chose STM32F4 Flash. Press Enter to -
. . Data base Description
accept .thls chapge. Note the Target selector in A ovraz SR -
- ARM 32bit Cortex-M4 CPU with FPU
the main pVision w1.nd'0w also changes to _g STVaZRISRG it st tosieston (T Accslrsor
STM32F4 Flash. This is your first target. Wl S TI32F4152G Lﬁ;r:;mmﬂ:::r:f”mw AT 20 DL
imi £ STM3ZF417IE Memori
15. Sm.nlarily, change Source; Group 1 to Startup. Q@ sTane oroies <o ey
This will add some consistency to your project €3 STMIZFA1TVE o\ Kyes coH
N X £ STMIZF4ITVGE exible static memory controller)
with the Keil examples. You can name these o STHRTEE (LD il e, G088 00modes
or organize them differently to suit yourself. _g bl e e
1 -POR, PDR, PVD and BOR
16. Select File/Save All. -£3 sTM32L151CE i koL
~£d STM32L151CB _|j ~Intemal 16 MHz factory timmed RC =
41 D 4 | _>|J
Continued on the next page...
[ok || carest | Help
24 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

Select the source files and debug adapter:

1. Using MS Explore (right click on Windows Start icon), copy blinky.c and system_stm32f4xx.c from
C:\Kei\ARM\Boards\ST\STM32F4-Discovery\Blinky to the ..\ STM32F4-Discovery\FAE folder you created. Copy
these files from an example project that utilizes a similar STM32 processor as you are using.

Source Files:

2. In the Project Workspace in the upper left hand of pVision, right-click on “STM32F4 Flash” and select “Add Group”.

Name this new group “Source Files” and press Enter. You can name it anything. There are no restrictions from Keil.

3. Right-click on “Source Files” and select Add files to Group “Source
Files”. :

4. Select the file Blinky.c and click on Add (once!) and then Close. =I-#3 STM32F4 Flash
System File: E' E‘ Start::m —
5. Right-click on “Startup” and select Add files to Group “Source Files”. , ZYS:HE i
6. Select system_stm32f4xx.c and click on Add (once!) and then Close. & E Source Files
7. Your Project window will look similar to the one shown here: > - [# Biinky.c

Select your Debug Adapter:
8. By default the simulator is selected when you create a new pVision project. You probably need to change this to a
Debug adapter such as ST-Link, ULINK2 or ULINKpro.

9. Select Target Options EAN or ALT-F7 and select the Debug tab. Select ULINK/ME Cortex Debugger as shown
below: If you are using another adapter such as ST-Link, J-Link or ULINKpro, select the appropriate adapter from
the pull-down list.

10. Select JTAG/SWD hardware debugging (as opposed to selecting the Simulator) by checking the circle just to the left
of the word “Use:” as shown in the window to the right:

11. Select Run to Main (unless you do not want this) [. x|

12. Select the Utilities tab and select the appropriate debug adapter and
the proper Flash algorithm for your processor.

13. Click on the Target tab and select MicroLIB for smaller programs. {+ Use: [ULINK2/ME Cortex Debugger ¥| Settings | ‘

I Linker Debug |Ut||rt|esl

See www.keil.com/appnotes/files/apnt202.pdf for details.
14. Click on OK. !
Modify Blinky.c
15. Double-click the file Blinky.c in the Project window to open it in the editing window or click on its tab if open.
16. Delete everything in Blinky.c except the main () function to provide a basic platform to start with:

iinclude <stdio.h>
#include ""STM32F4xx.h"

int main (void) {
while (1); { loop forever
3

}

17. Select File/Save All
Compile and run the program:

3
18. Compile the source files by clicking on the Rebuild icon. B3 | you can also use the Build icon beside it.
LOAD

19. Program the STM32 flash by clicking on the Load icon: #% Progress will be indicated in the Output Window.
20. Enter Debug mode by clicking on the Debug icon. @

21. Click on the RUN icon. |—H' Note: you stop the program with the STOP icon. o

22. The program will run but since while (1) is empty — it does not do much. It consists of a NOP and Branch to itself.
You can set a breakpoint on any assembly or source lines that have a darker grey box signifying assembly code.
23. You are able to add your own source code to create a meaningful project.
This completes the exercise of creating your own project from scratch.

You can also configure a new RTX project from scratch using the RTX_BIlinky project.

25 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

ETM Trace Examples: For reference only... Note: MDK 5.10 has enhanced ETM windows and triggers:

These examples were run on the STM3240G-EVAL evaluation board. These are applicable for the Keil MCBSTM32F400
board. These examples are included for reference. A ULINKpro debug adapter is required for ETM operation.

ETM provides serious debugging power as shown on the next few pages. It is worth the small added cost.
Most STM32 processors are ETM equipped.
1. Connect the ULINKpro to the STM3240G board using the 20 pin CN13 Trace connector.

2. Start pVision by clicking on its desktop icon. e

Select Project/Open Project. Open C:\Kei\ARM\Boards\ST\STM3240G-EVALA\ Blinky Ulp\Blinky.uvproj.

4. Select TracePort Instruction Trace in the Target Options box as shown here: Ll

5. Compile the source files by clicking on the Rebuild icon. b . You can also use the Build icon beside it.
LOAD

6. Program the STM32 flash by clicking on the Load icon: ## Progress will be indicated in the Output Window.
Enter Debug mode by clicking on the Debug icon. @ Select OK if the Evaluation Mode box appears.
DO NOT CLICK ON RUN YET !!!

9. Open the Data Trace window by clicking on the small arrow beside the Trace Windows icon. ====> | exeptions

Counters

v | Trace Data

10. Examine the Instruction Trace window as shown below: This is a complete record of all the program flow since
RESET until pVision halted the program at the start of main() since Run To main is selected in pVision.

|Trace Data a Xl
" Display: Al - & = in Al = -,
Time Address / Port Instruction / Data Src Code / Trigger Addr

X i 0x0B0014E4 CMP r2,#0w00 d
X1 0wDBO014ES * BNE 0xDE0014ED
X1 0wDBO014ES BX Ir

X1 0wDB001432 ADDS rd,rd #0x10
X1 0w0B001434 CMP 4,15
X
X
X
X

0.000122 800 s
0.000122833 s

: 0x08001436 | *BCC 0405001425
: 0x0B001438 | BLW 0x05000190

:0x08000190 | LDR 10,[pc,£0] ; @0x03000194
: 0x0B000192 | BX] ZI

@Disassemhly | ﬂLagic Analyzer | ﬂTrace Data

11. In this case, 123 200 s shows the last instruction to be executed. (BX r0). In the Register window the PC will display
©

0000122933 s

0.000123 200 s

the value of the next instruction to be executed (0x0800 0192 in my case). Click on Single Step once.
12. The instruction PUSH will display: | 0x080011DA | PUSH (r3,Ir) | int main(void) { /* Main Program */ |

13. Scroll to the top of the Instruction Trace window to frame # 1. This is nearly the first instruction executed after
RESET.

A STM3240G-EVAL board connected to a ULINKpro using the
special CoreSight 20 pin ETM connector:

26 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

3) Code Coverage: For reference only...

14. Click on the RUN icon. @ After a second or so stop the program with the STOP icon. o

15. Examine the Disassembly and Blinky.c windows. Scroll and notice different color blocks in the left margin:

16. This is Code Coverage provided by ETM trace. This indicates if an instruction has been executed or not.

Disassembly

Colour blocks indicate which assembly instructions have been executed.

A W po —_—

5.
this point.
6.
7.

i
&

Green: this assembly instruction was executed.
Gray: this assembly instruction was not executed.
Orange: a Branch is always not taken.

Cyan: a Branch is always taken.

Light Gray: there is no assembly instruction at

RED: Breakpoint is set here.
Next instruction to be executed.

In the window on the right you can easily see examples of each type of
Code Coverage block and if they were executed or not and if branches

were taken (or not).

Ox08001042 F1BOTF80 CMP
0x08001046 D300 BCC
0x08001048 EOQIC B

1141: =

SysTick->LORD

Ox0800104A FO20417F BIC
Ox0800104E 1E49 SUES
Ox08001050 FO4F22E0 MOV
0x08001054 6151 STR

=1

ysTick IR{m,

1142: NVIC SetPriority (5y
0x08001056 BFOO HOP

1014: if (IRQn < Q)
0x08001058 1751 ASES
0x0800105a 2900 CMP
0x0800105C DROS BGE

1015: SCB->SHP[((uint32_

1016: else {
0x0800105E 210F MCVS
0x08001060 0109 LSLS

r0, #0x1000000
0x08001044

0x08001084

cks & SysTick]
ri1,r0,#0xFFO00L
rl,rl,#1

r2, #0xEQOQOEOQQD
rl, [x2,#0x14]
(1

rl,r2,#23
rl,#0x00
0x0800106R

t) (IRgm) & O=xF,

rl,#0x0F
rl, rl, #4

@Disassembly Q Logic Analyzer | ﬂ Instruction Trace |

Why was the branch BCC always taken resulting in 0x0800 1048 never being executed ? Or why the branch BGE at
0x800_105C was never taken ? You should devise tests to execute these instructions so you can test them.

Code Coverage tells what assembly instructions were executed. It is important to ensure all assembly code produced by the
compiler is executed and tested. You do not want a bug or an unplanned circumstance to cause a sequence of untested
instructions to be executed. The result could be catastrophic as unexecuted instructions cannot be tested. Some agencies such
as the US FDA require Code Coverage for certification.

Good programming practice requires that these unexecuted instructions be identified and tested.

Code Coverage is captured by the ETM. Code Coverage is also available in the Keil Simulator.

A Code Coverage window is available as shown below. This window is available in View/Analysis/Code Coverage. Note
your display may look different due to different compiler options.

Code Coverage x X |
Update || Clear ‘ Module: I:AII Modules> j
Modules/Functions | Execution percentage I;|
- Blinky
- ADC_init 100 of 65 instructions, 2 condjump(s) not fulty executed

100% of 95 instructions

100% of 13 instructions

= IRQ

o SysTick_Handler
- Calefverage

- gendchar
- getkey

_Sys_exit

100% of 13 instructions
100% of 17 instructions

54% of 108 instructions, 2 condjump(s) not fulty executed

1007 of 48 instructions, 1 condjump(s) not fulty executed

100% of 25 instructions

100% of 17 instructions, 1 condjump(s) not fulty executed

100% of 47 instructions

687 of 22instructions, 3 condjumpis) not fully executed

0% of 8 instructions

100% of & instructions
0% of 4 instructions
0% of 3 instructions
0% of 5 instructions
0% of 2 instructions

@Disas

semb

ly | ﬂ Logic Analyzer

CS}E Code Coverage ﬂ Instruction Trace

27

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit

Copyright © 2014 ARM Limited or its affiliates. All rights reserved

www.keil.com/st

4) Performance Analysis (PA): For reference only...

Performance Analysis tells you how much time was spent in each function. The data can be provided by either the SWV PC
Samples or the ETM. If provided by the SWV, the results will be statistical and more accuracy is improved with longer runs.
Small loops could be entirely missed. ETM provides complete Performance Analysis. Keil provides only ETM PA.

Keil provides Performance Analysis with the uVision simulator or with ETM and the ULINKpro. SWV PA is not offered.
The number of total calls made as well as the total time spent in each function is displayed. A graphical display is generated
for a quick reference. If you are optimizing for speed, work first on those functions taking the longest time to execute.

Use the same setup as used with Code Coverage.

2. Select View/Analysis Windows/Performance Analysis. A window similar to the one below will open up.

3. Exit Debug mode and immediately re-enter it. @ This clears the PA window and resets the STM32 and reruns it to
main() as before. Or select the Reset icon in the PA window to clear it. Run the program for a short time.

4. Expand some of the module names as shown below.

5. Note the execution information that has been collected in this initial short run. Both times and number of calls is
displayed.

6. We can tell that most of the time at this point in the program has been spent in the GLCD routines.

Resst ‘ Show: IModuIes j

Module/Function Calls Time(Sec) Time(%) | =

= By T67s 1007 [E— |

Bl GLCD_16bitlF_STM32F2ac.c 1.1658 100 B

------- delay 5 £95.090 ms e I |
"""" rd_regq 1 0.600us 0% |
"""" GLCD_lnit 1 13.767 us 0% |
"""" GLCD_SetWindow 455 321200 us 0% |
"""" GLCD_WindowMax 5 2067 us 0% |
"""" GLCD_PutPixel 0 lus 0% |
"""" GLCD_Set TextColor 748 60.383 us 0% |
"""" GLCD_SetBackCalor 2 0.367 us A |
"""" GLCD_Clear 1 8.000 ms 1% I
------- GLCD_DrawChar_US 0 Ous 0% | i
"""" GLCD_DrawChar_L16 77 10.004 ms 1% |
"""" GLCD_DisplayChar 77 58.000 us P |
"""" GLCD _DisplayString 4 16.067 us 0% |
"""" GLCD_Clearln 0 Dus 0% |
"""" GLCD_Bargraph 373 250.735 ms 21 I
"""" GLCD_Bitmap 0 Dus 0% |
....... GLCD_Bmp o Dus 0% I
"""" GLCD_ScrollVertical 0 lus 1|
"""" wr_cmd 3233 510.700 us 0|
"""" wr_dat 2781 220,367 us 0% |
------- wr_dat_only 1417418 154.013 ms 17 I
"""" Wr_reg 271 1.545ms 0% | e

@Disassemhly | E Performance Analyzer ﬂ Logic Analyzer |C3E Code Coverage | ﬂTl'ace Drata |

Click on the RUN icon. Eh‘

Note the display changes in real-time while the program Blinky is running. There is no need to stop the processor to
collect the information. No code stubs are needed in your source files.

9. Select Functions from the pull down box as shown here and notice the difference.

10. Exit and re-enter Debug mode again and click on RUN. Note the different data set displayed.

11. When you are done, exit Debug mode.

TIP: You can also click on the RESET icon - % | but the processor will stay at the initial PC and will not run to main(). You
can type g, main in the Command window to accomplish this.

When you click on the RESET icon, the Initialization File .ini will no longer be in effect and this can cause SWV and/or ETM
to stop working. Exiting and re-entering Debug mode executes the .ini script again.

28 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

5) Execution Profiling: For reference only...

Execution Profiling is used to display how much time a C source line took to execute and how many times it was called. This
information is provided by the ETM trace. It is possible to group source lines (called collapse) to get combined times and
number of calls. This is called Outlining. The pVision simulator also provides Execution Profiling.

1. Enter Debug mode. Execution Profiling » Disabled
2. Select Debug/Execution Profiling/Show Time. 7| Show Time
. . Memaory Map...
3. In the left margin of the disassembly and C source T Show Calls
windows will display various time values. T
. Function Editor (Open Ini File)... Reset Information

4. Click on RUN.

5. The times will start to fill up as shown below right:

6. Click inside the yellow margin of Blinky.c to refresh it.

7. This is done in real-time and without stealing CPU cycles.

8. Hover the cursor over a time and ands more information appears as in the yellow box here:
Time: Calls: Average:
19.599 139910257 * 0.140 s

9. Recall you can also select Show Calls and this information rather than the execution times will be displayed in the
margin.

Abstract.tx‘t/ Blinky.c r core_cm3.h I

207 0.050 ps GLCD SetTextColor (Blue):
208 fendif // USE LCD
209
210 0,033 ps while (1) {
211 14793 | AD value = AD last;
212 2157 = if (AD value != AD last)
213 0,033 ps AD walue = AD last;
214
215 14145 if (AD value != AD print) {
216 $ifdef _ USE_LCED
217 7967 ps GLCD_SetTextColor (Red);
28 10817 ps GLCD Bargraph (9 * _ FONT W
219 E117 ps GLCD SetTextColor (White):
220 #endif // USE LCD
221
222 3175 ps AD print = AD wvalue;
223 E.380 ps AD dbg = AD walue;
224 H
225
226 FA* Printf message with AD wal
227 2297 = if (clock 1s) {
228 0.500 ps clock 1s = 0;
229 0.EEY pz sprintf (text, "AD wvalue = C
230
231 Time: Calls: Average:
232 00667 ps B * 0.074 ps e);
233 0875 ps GLCD DisplayString(5, 0, _
234 #endif // USE LCD
235 0.483 ps printf ("%=\r\n", text):
236 H
"‘\"\-r
29 Copyright © 2014 ARM Limited or its affiliates. All rights reserved

STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

6) In-the-Weeds Example: For reference only...

Some of the hardest problems to solve are those when a crash has occurred and you have no clue what caused this. You only
know that it happened and the stack is corrupted or provides no useful clues. Modern programs tend to be asynchronous with
interrupts and RTOS task switching plus unexpected and spurious events. Having a recording of the program flow is useful
especially when a problem occurs and the consequences are not immediately visible. Another problem is detecting race
conditions and determining how to fix them. ETM trace handles these problems and others easily and is not hard to use.

If a Hard Fault occurs, the CPU will end up at the address specified in the Hard Fault vector located at 0x00 000C. This
address points to the Hard Fault handler. This is usually a branch to itself and this Branch instruction will run forever. The
trace buffer will save millions of the same branch instructions. This is not useful. We need to stop the CPU at this point.

This exception vector is found in the file startup stm32f4xx.s. If we set a breakpoint by double-clicking on the Hard Fault
handler and run the program: at the next Hard Fault event the CPU will jump to the Hard Fault handler (in this case located at
0x0800 01BO0 as shown to the right) and stop. Disassembly

193: B . -

The CPU and also the trace collection will stop. The trace 1943 ENDE
. .o . . . 195: MemMan Handler)
buffer will be visible and extremely useful to investigate and tees T e
M 197: EXPORT MemManage Handler [WERK]
° 0x0B80001B0 ETFE B HardFault Handler {0x080001B0}
determine the cause of the crash B §
198: B

1. Open the Blinky Ulp example, rebuild, program the 1551 e
Flash and enter Debug mode. Open the Data Trace 20 posten it Mandes _.,j

WindOW. @Disassembly ﬂL-Jg\c;naly:ell

2. Locate the Hard fault vector near line 207 in the disassembly window or in startup stm32f4xx.s.

Set a breakpoint at this point. A red block will appear as shown above.

4. Run the Blinky example for a few seconds and click on STOP.

Wl
5. Click on the Step Out icon & to go back to the main() program as shown in the Call Stack + Locals window:

6. In the Disassembly window, scroll down until you find a POP instruction. I found one at 0x0800 1256 as shown
below in the third window:

7. Right click on the POP instruction (or at the MOV at Name | lotionvaiue | ype
0x0800 124E as shown below) and select Set Program E- @ main 0:08000E30 Int fg
. . . . D 0x0390 -

Counter. This will be the next instruction executed. . :D:::f — —— E::g:ﬁ: i

8. Click on RUN and immediately the program will stop on (7o N pr—
the Hard Fault exception branch instruction. =

9. Examine the Data Trace window and you find this POP plus everything else that was previously executed. In the
bottom screen are the 4 MOV instructions plus the offending POP.

10. Note the Branch at the Hard Fault does not show in the trace window because a hardware breakpoint does execute the

instruction it is set to therefore it is not recorded in the trace buffer. 0%08001248 F1340401 SUB 4,24, $0x01
0x0800124C DCDF BGT 0x0800120E
30x0800124E 4648 MoV £0,z8
0x08001250 4631 MOV rl, ré
0x08001252 462A MOV r2,rs
0x08001254 4643 MoV £3,z8
0x08001256 ESBDIFFO POP {r4-ri2,pc}
0x08001254 0000 MOVS r0,x0
_ scatterload:
 Display: All - = - in Al - = Ed
Time Address / Port Instruction / Data Src Code / Trigger Addr
¥:0x03000DD4 | LDRE r1, [0, #0x00] |
¥ 002000006 CBZ 1, 0x05000DED
1.215 414 190 s | X : 0x08000DED MOV i, #0xFFFFFFFF return -1; /* Conw, in pro...
1.215 414 210 5 | ¥ : 0x08000DES BX Ir
¥ 0x0300124E MOV rd,r9
¥ 003001250 MO e
X1 003001252 MOV r2,rs
X1 003001254 MOV 3,18
1.215 420 300 s | ¥ : 0x08001256 POP [rd-ri2,pc TI

The frames above the POP are a record of all previous instructions executed and tells you the complete program flow.

30 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

21) Serial Wire Viewer and ETM Trace Summary:

Serial Wire Viewer can see:
= Global variables.
= Static variables.
= Structures.
= Peripheral registers — just read or write to them.
= Can’t see local variables. (just make them global or static).
= Can’t see DMA transfers — DMA bypasses CPU and SWV by definition.

Serial Wire Viewer displays in various ways:
= PC Samples.
= Data reads and writes.
= Exception and interrupt events.
= CPU counters.

= Timestamps.

ETM Trace is good for:
= Trace adds significant power to debugging efforts. Tells where the program has been.
» A recorded history of the program execution in the order it happened.
= Trace can often find nasty problems very quickly. Weeks or months can be replaced by minutes.
= Especially where the bug occurs a long time before the consequences are seen.
= Or where the state of the system disappears with a change in scope(s).

= Plus - don’t have to stop the program. Crucial to some projects.

These are the types of problems that can be found with a quality ETM trace:
= Pointer problems. Illegal instructions and data aborts (such as misaligned writes).

= Code overwrites — writes to Flash, unexpected writes to peripheral registers (SFRs), a corrupted stack.
How did | get here ?

= Out of bounds data. Uninitialized variables and arrays.
= Stack overflows. What causes the stack to grow bigger than it should ?

* Runaway programs: your program has gone off into the weeds and you need to know what instruction caused this. Is
very tough to find these problems without a trace. ETM trace is best for this.

= Communication protocol and timing issues. System timing problems.

= ETM facilitates Code Coverage, Performance Analysis and program flow debugging and analysis.

For information on Instruction Trace (ETM) pleas e visit www.keil.com/st for other labs discussing ETM.

31 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

22) Document Resources: See www.keil.com/st
Books:
1. NEW! Getting Started MDK 5: Obtain this free book here: www.keil.com/mdk5/.

2. There is a good selection of books available on ARM processors. A good list of books on ARM processors is found at
www.arm.com/university by selecting “Teaching Resources”. You can also select ARM Related Books but make
sure to also select the “Books suited for Academia” tab to see the full selection.

3. uVision contains a window titled Books. Many documents including data sheets are located there.

4. Alist of resources is located at: www.arm.com/products/processors/cortex-m/index.php
Click on the Resources tab. Or search for “Cortex-M3” on www.arm.com and click on the Resources tab.

5. The Definitive Guide to the ARM Cortex-M0/M0+ by Joseph Yiu. Search the web for retailers.
6. The Definitive Guide to the ARM Cortex-M3/M4 by Joseph Yiu. Search the web for retailers.

7. Embedded Systems: Introduction to Arm Cortex-M Microcontrollers (3 volumes) by Jonathan Valvano.

Application Notes:

8. Using Cortex-M3 and Cortex-M4 Fault Exceptions www.keil.com/appnotes/files/apnt209.pdf

9. Segger emWin GUIBuilder with pVision™ www.keil.com/appnotes/files/apnt_234.pdf

10. Porting mbed Project to Keil MDK™ www.keil.com/appnotes/docs/apnt_207.asp

11. MDK-ARM™ Compiler Optimizations www.keil.com/appnotes/docs/apnt_202.asp

12. Using pVision with CodeSourcery GNU www.keil.com/appnotes/docs/apnt_199.asp

13. RTX CMSIS-RTOS in MDK 5 C:\Keil vS\ARM\Pack\ARM\CMSIS\3.20.4\CMSIS RTXDownload
14. RTX CMSIS-RTX www.keil.com/demo/eval/rtx.htm and www.arm.com/cmsis
15. Barrier Instructions http://infocenter.arm.com/help/topic/com.arm.doc.dai0321a/index.html
16. Lazy Stacking on the Cortex-M4: www.arm.com and search for DAI0298A

17. Cortex Debug Connectors: www.arm.com and search for cortex debug_connectors.pdf
18. Sending ITM printf to external Windows applications: www.keil.com/appnotes/docs/apnt_240.asp

Keil Tutorials for STMicroelectronics Boards: see www.keil.com/st

Community Forums: www.keil.com/forum and http://community.arm.com/groups/tools/content

ARM University program: www.arm.com/university. Email: university@arm.com

ARM Accredited Engineer Program: www.arm.com/aae

mbed: http://mbed.org

For comments or corrections on this document please email bob.boys@arm.com.

For more information on the ARM CMSIS standard: www.arm.com/cmsis,

32 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

23) Keil Products and Contact Information:

Keil Microcontroller Development Kit (MDK-ARM™)
= MDK-Lite™ (Evaluation version) $0
= NEW !l MDK-ARM-CM™ (for Cortex-M series processors only — unlimited code limit)
= MDK-Standard™ (unlimited compile and debug code and data size)
= MDK-Professional™ (Includes Flash File, TCP/IP, CAN and USB driver libraries)

For special promotional pricing and offers, please contact Keil Sales for details.

USB-JTAG adapters (for Flash programming too)
= ULINK2 - (ULINK2 and ME - SWV only — no ETM)
= ULINK-ME — sold only with a board by Keil or OEM.

= ULINKpro - Cortex-Mx SWV & ETM trace.
MDK also supports ST-Link and Segger J-Link Debug adapters.

The Keil RTX RTOS is now provided under a Berkeley BSD type license. This makes it free. = —

3 :
All versions, including MDK-Lite, includes Keil RTX RTOS with source code ! [
www.keil.com/demo/eval/rtx.htm | PIKEIL
Keil provides free DSP libraries for the Cortex-M3 and Cortex-M4. | DE]KEEE'% Developmentilaols

Getting 5‘-1”-':‘{

Call Keil Sales for details on current pricing, specials and quantity discounts.
Sales can also provide advice about the various tools options available to you.
They will help you find various labs and appnotes that are useful.

CAll products are available from stock.
All products include Technical Support for 1 year. This is easily renewed.

Call Keil Sales for special university pricing. Go to www.arm.com/university to
view various programs and resources.
MDK supports STM32 Cortex-M3 and Cortex-M4 processors. Keil supports

many other ST processors including 8051, ARM7, ARM9™ and ST10
processors. See the Keil Device Database”™ on www.keil.com/dd for the complete list of STMicroelectronics support. This
information is also included in MDK.

Note: USA prices. Contact sales.intl@keil.com for pricing in other countries.

For the entire Keil catalog see www.keil.com or contact Keil or your local distributor.

For Linux, Android and bare metal (no OS) support on ST processors such as SPEAr, please see DS-5 www.arm.com/ds5.

For more information:
Keil Sales In USA: sales.us@keil.com or 800-348-8051. Outside the US: sales.intl@keil.com
Keil Technical Support in USA: support.us@keil.com or 800-348-8051. Outside the US: support.intl@keil.com.

For comments or corrections please email bob.boys@arm.com.

For the latest version of this document and for more STMicroelectronics specific information, go to www.keil.com/st

CMSIS Version 3: See www.arm.com/cmsis and http://community.arm.com/groups/tools/content for more information.

Also see www.keil.com/st and www.keil.com/forum

ARM?® Cortex” Microcontroller
Software Intyrface Standard Intelligent Processors by ARM*

YCMSIS " e w B
V COMPLIANT cor ex KEIE

Tools by ARM

33 Copyright © 2014 ARM Limited or its affiliates. All rights reserved
STMicroelectronics Discovery STM32F407 Lab with ARM® Keil™ MDK toolkit www.keil.com/st

