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Software description 

See .ino file 

Most of the software is driven by the PPS interrupt. The PPS interrupt function is very short and does 

mainly three things. First it reads the ADC0 to get the TIC value (nanoseconds). Second it reads the 

timer1 value. The timer1 value is already captured by hardware. The third is to set a PPS read flag.  

Most of the main loop function waits for the PPS read flag. Before it gets that it checks the timer1 

and counts overflows that happen every 10ms. If the count is over 130 (1.3sec) it serial prints “No 

PPS”. The main loop also checks if anything is written on the serial line and have a function to blink 

the locked LED if the DAC value is near minimum or maximum. With the PPS flag set (by the 

interrupt) it goes to the calculate function.  

The calculate function first combines the TIC value (time error in nanosecond) and timer1 value. 

After that it low pass filters the value if the loop is in the locked state and goes to the PI-loop.  

The low pass filter time constant is set by the preFilterDiv that can be configured as 2, 3 or 4. Default 

it is set to 2.  

The filter time constant is: (PI-loop) time constant / preFilterDiv. 

With a time constant of 100 the filter time constant will be 50. Maximum filter time constant is 1024s 

(this is mainly because I wanted to avoid overflows in internal calculations). 

The low pass is implemented as: 

Filtered time error = Filtered time error + (time error - Filtered time error) / filter time constant 

The proportional term changes the output (in ppb or ns/s):  

Filtered time error (in nanoseconds) divided with the time constant (in seconds).  

The integral term adds this every second to the output (in ppb or ns/s): 

 Filtered time error (ns) / time constant (s) / time constant (s) / damping (unit less) 

Damping is default 3. This gives a quite fast response with just a little overshoot. The damping can be 

configured between 0.5 and 10. 10 give a slow response but no ringing. 0.5 gives a lot of overshoot 

with a lot of ringing. 

The PI-loop uses a combination of long and float variables to give about 15 digits of precision. The 

Arduino float is only about 6 digits and the long about 9 digits so the combination was one way to get 

enough resolution to handle the large span of time constants. 

A large part of the calculation function is storage of 300 and 10800 second averages of time error, 

DAC value and temperature (ADC2). I have selected 300seconds a little arbitrary. It is a compromise 

between the maximum storage time (now 12 hours) that I of course wish to have longer and having 

as short averaging time as possible. The 10800second (3 hours) is selected to give eight points per 

day. Four points could have been enough to see daily variations but I choose eight points. This gives 

18 days of storage. I like the 10800secs storage as that gives the possibility to see both long term and 

temperature drifts. 
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The printDataTo Serial function also is very long. It prints a lot of information. See example from 

startup in figure 1 in Appendix. If you just wish some data it is possible to change with the “i” 

command. The short version only shows the first five rows: time, ns, dac, temp and status. 

Use “f1” for help on commands. See example in figure 2 in Appendix. Using “f1” gives a lot of 

information from the code for the getCommand function. By the way a special thank to Jim Harman 

for this function and other small comments.  

The time error prints without decimals but for better accuracy it is possible to have one decimal. As 

the time error is linearized, truncation may give worse results if used as a Time Interval Counter 

together with Timelab without the extra decimal. 

A special function for linearization of the temperature sensors selects different conversions for 

different sensors on ADC2. This is selected with the “j” command. The default “j0” is raw ADC values 

(0-1023). Right now “j1” selects LM35, “j2” 10k NTC with beta 3950 + 68k pull-up, “j3” 10k NTC with 

beta 3950 + 47k pull-up, “j4” 10k NTC with beta 3950 + 39k pull-up and “j5” 22k NTC with beta 3950 

+ 120k pull-up.  “j9”selects LM35 with Fahrenheit readout. “j8” is a special case if the Aref is low as it 

assumes a Aref of 1070mv instead of 1100mV for an LM35. 

 

Installing the software 

Download the Arduino IDE for your computer from  https://www.arduino.cc/en/Main/Software    

Open the GPSDO sketch (program). Power up and connect the processor to the computer. Set the 

Arduino IDE to the correct processor and serial port. 

Download the program to the processor 

 

Startup and setting the configuration 

Before testing the function of the controller, it is good to test that the 1PPS and 10MHz is ok. A 

10MHz sine output from the oscillator preferably is converted to 5VCMOS with just an HC04 or AC04 

inverter with a 10k resistor between in and output. 

If power up works, connect the serial line and use a serial monitor (e.g. Arduinos own) to see if the 

program runs.  

The serial monitor in the software is right now using 9600 bauds standard setup. 

If the processor and program is ok the serial monitor first will print “Arduino GPSDO with 1ns TIC by 

Lars Walenius”. Next it will print revision and a header. If the PPS is not connected or the GPS 

receiver not outputting the PPS yet the output will be “No PPS” otherwise it will start to output a 

long string of values. 

It is possible to test the help functions by sending “f1” to the processor, a long text should return 

with almost all commands. Sending “f2” will give some variables (See figure 3 in Appendix), ” f3” 

https://www.arduino.cc/en/Main/Software
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reads the ADC3 and “f4” reads part of the EEPROM (See figure 4 in Appendix). As the EEPROM is new 

it will mostly read 65535. Later you will save parameters to the EEPROM with the “s1” or “s2” 

commands. Sending “e22” will set all the EEPROM to zero. Now is a good time to send “e22”. After 

that you can check it with “f4” that now shall read all zeros. 

The next step is to connect the 1PPS and 10MHz and Voltage Control to the oscillator if not yet done. 

Before the PPS comes on from the GPS receiver it shall show “No PPS”. As soon as you get PPS it shall 

show a long string and it is time to learn the different fields of the serial monitor. The first field is just 

seconds since start. The second field is the TIC value in nanoseconds if the 10 MHz is missing it will be 

1023 (as the stop pulse to the HC4046 is missing) but be shown as “missing 10MHz?” The third field is 

the DAC value between 0 and 65535. The first five minutes it will show “warmup” in the fifth field 

and the DAC value shown in the third field with an empty EEPROM is 32768.  

Test to send different DAC values by sending “h” + “value” +” enter”. Value shall be 1 to 65535. If you 

send “h0” it will hold the old DAC value.  

If you send “h1” the output, if not connected to the VCO, will be close to zero and with “h65535” it 

shall be close to 5V measured after the low pass filter. So temporarily disconnect the DAC output to 

the oscillator. With just a 3 ½ digit DMM it is possible to see if the low and high 8bit PWMs are 

working. Set “h256” and measure the value it shall be about 20mV. Set “h511” it shall be about 

40mV. Set “h524” and the value shall be about 1mV higher.  

With the VCO connected again it is time to test the VCO range. Set “h1” and check the field diff_ns. It 

will show the frequency deviation roughly in ppb (1E-9) but with the opposite sign. As the PPS from 

the GPS has a lot of jitter the diff_ns will have that also as it is only the difference between the new 

and old TIC value. The diff_ns will be even worse as the fine TIC “overflows”. Later with linearization 

the extra step at “overflow” can be minimized. By averaging it is possible to see the minimum 

oscillator value. Another way is to see the frequency deviation is to use the TIC value in the second 

field and calculate the frequency.  

Do the same for “h65535” to find the maximum frequency. The minimum shall be below zero and 

the maximum above. Calculate the difference between minimum and maximum. For a VCXO or 

VCTCXO it might be 10000-50000 ppb. For most of the OCXO’s from eBay, that often have SC-cut 

crystals, it is normally 500-5000ppb (AT-cut OCXO can have higher values). Now or later you can 

restrict the VCO range by using resistor networks and/or trim potentiometers to restrict the VCO 

range. Setting “h32768<enter>” is a good check also. If the VCO range is above 6500ppb you should 

restrict the range. 

The VCO range is needed to set the gain and the gain is needed to get a working PI-loop.  

The gain is calculated as gain = 65536 / VCO range (in ppb). A range by e.g. a VCTCXO of 6500ppb 

(6.5ppm) gives a gain of 10 and with a rubidium with a range of 1ppb the gain will be 65535. For a 

good OCXO restricting the range to say 130ppb, giving a gain of 500, gives a DAC resolution of 2E-12 

per bit that has worked very well for me. Setting an OCXO to 130ppb range gives less margin for long-

term drift but most OCXO’s with SC-cut crystals drifts less even over a life time (otherwise you could 

change the resistor network/ trimpot). As you also noted the gain is the inverse of the DAC LSB so the 
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LSB =1/gain ppb that is useful to convert the dac value to frequency for example when using the 

Timelab to read the dac value.  

Load the gain value by entering “g<value><enter>”. Save it to EEPROM by “s1”. 

Now it is time to close the loop. Enter “r”. This will set run mode. The default time constant is 32 

seconds. If everything is correct the PI-loop will manage to get the TIC value stable to within 100ns in 

say 10 time constants (about 5 minutes) and if the ns (TIC) value is within 100ns for more than 5 time 

constants the status field will say “Locked” instead of “Nolock”. Yes!!! It is working!!! Time for 

experimenting and fine tuning. 

 

Trouble shooting 

To troubleshoot the hardware an oscilloscope and DMM are useful. As the most important signals 

are the 1PPS and 10MHZ an oscilloscope are useful to follow the signals. 

The output on HC4046 pin 15 shall be a pulse 0-1us, once a second. If not check the inputs to the 

HC4046. Remember that the 1PPS from the GPS module is often just a short pulse in the 

microsecond or millisecond range. On the ADC0 input it shall be a corresponding ramp.  

The PWM-DAC outputs can also be checked with an oscilloscope. Frequency is about 488Hz.  

 

Experiments and tweaking 

Finding optimum time constant and setting linearization parameters: 

After getting lock the next question is to find the optimum time constant. One way is to set the 

GPSDO in hold mode (“h0”). Now the GPS and oscillator can be measured by the internal TIC. With 

Timelab it is possible to see the time, frequency, ADEV, MDEV etc. in real time. I prefer to use MDEV 

to find the optimal time constant.  The reason is two. First it gives lower time constants than ADEV 

(ADEV for me seems to get too long TC). The second is that the MDEV is filtering the signal, as the 

GPSDO value also is low pass filtered. Always check that the frequency response shows no “jumps” as 

that can upset the MDEV curve. Below are examples of response with and without jumps. 
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Of course if your oscillator has jumps it may be a reason to lower the TC. In the example above 

maybe a TC of 150s may be reasonable with the jump and 500s without the jump. A large jump may 

also make the GPSDO to lose lock. A rule of thumb I have is that a jump of 1ppb and a TC of 100s may 

give a time excursion up to 100ns. As the lock is lost at 100ns time offset, that is on the edge.  If you 

have a TC of 1000s a jump of 0.1ppb could be enough to lose lock. This is also a reason that I really 

dislike the digitally compensated VCTCXO’s that often have jumps of about 50ppb due to 

temperature compensation. With 50ppb jumps you can lose lock with just a TC of 2s! 

One important thing if you use the internal TIC to get ADEV etc. is to set the linearization parameters. 

The most important is to set right span of the TIC. That is linearization min and max. The serial 

monitor shows the linearized value in row two. Further on you find a column “filtx10” that shows the 

filtered ADC value. If the GPSDO isn´t locked the filter is off so the value is the raw ADC values times 

ten, so just take away the last zero. If the TIC offset is set to the default 500 “filtx10” will be close to 

5000 at lock. This is also true for the 300 and 10800s logged values. 

One way to find the min and max easy is to have the GPSDO locked and change the TIC offset (note 

the TIC offset is subtracted away in column 2). With a TIC offset of 1000 the GPSDO will go between 

min and max if the max ADC is less than 1000. The filtx10 values will get you the min and max. Use 

the command “l” (small L) to set these and store them with “s1”. Remember to set the TIC offset 

back to 500 before saving. The “x2” value (non-linearity compensation) is difficult to get with just the 

noisy PPS. The best way to get it has for me been to use the PICDIV PD26 from Tom van Baak (see 

leapsecond.com). With the internal 10Mhz connected through the PICDIV PD26 to the PPS it will give 

you steps of 400ns but as the range of the TIC is 1000us the readings will be 0, 400, 800, 200, 600, 0, 

400 etc. So you get 5 calibrations points. The “diff_ns” readings shall be 400+-1ns if the linearization 

is correct. I have managed to get ADEVs of less than 1E9/Tau in this way with Timelab (remember to 

turn on the extra decimal with “i”). See figure 9-13 in the appendix. 

The second method to get a good TC is to use the GPSDO in locked mode with minimum TC of 4 s. 

This don´t require the linearization. Now look at the DAC value with the Timelab program. See figure 

5-6 in the appendix how to setup Timelab. By setting the Timelab to frequency difference mode and 

adjusting the scale to the DAC gain  (1E-9/gain e.g. gain 500 gives scale 2E-12) you can see how the 

DAC is adjusted. This will also give you an MDEV curve. Below about 10s the result is too low as the 

loop will filter the DAC. At Tau 1s you probably will see slightly below 1E-9 with a PPS from the uBlox 

series 6 or 7 (NEO 6-7, LEA6T etc.). Here it is the same comment about jumps as above. See pictures 

above. In the picture you see the downward slope from the PPS jitter. At some point the slope 

changes and the oscillator drift and noise is seen. At this “intersect” a reasonable TC is found. If the 

oscillator has a lot of drift the slope start to go upwards to early (remember that the I-term 

compensates for linear drift). One recommendation is to use the “subtract linear drift” in time lab. 

See figure 7 in appendix. 

A third possibility to find a TC is to set a long TC and see if you lose lock. Lower the TC until you get 

reliable lock and say maximum +-50ns excursions. But it is not my preferred method.  

The second method probably is quickest. 

With method one or two you will also get a feeling for the noise floor of the oscillator. Even if the 

only reasonable correct point is the intersect point that contains both the PPS and oscillator jitter, a 
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good guess is that the oscillator set the ADEV-MDEV for the complete GPSDO at Taus below the 

intersect point and will be no worse than a decade higher for Taus down to 1s. A guess for the long 

Tau is that it will be around 1E-12 at 10000secs and 1E-13 at a day even with a simple NEO-6M 

receiver.  

Setting Damping: 

Damping is default set to 3. If you want to experiment, it might be set to between 0.5 and 10.  

0.5 will give a lot of ringing and 10 a slower response.  

As a note I think the Thunderbolt GPSDO damping of 1.2 corresponds to what I call 3, 0.5 is my 0.5, 

0.7 is my 1 and 2.2 is my 10.  

TIC offset: 

If you change this the 10 MHz will shift the corresponding nanoseconds relative to the input PPS. This 

may be useful sometimes, but don´t change too much. +-50ns is probably ok. 

Checking step response: 

By sending a new DAC value it is possible to see the step response. Check the time and DAC value 

and make a graph. 

Setting readout of temperature: 

See the software info above for different options with LM35 or NTC´s to get readout in Celsius or 

Fahrenheit (for LM35). 

See long-term drift and temperature drift with the three hour log: 

I like the three hour log as it gives the possibility to quite easy see the drifts. The DAC value can be 

transferred to frequency just by dividing with the gain factor. This gives relative frequency in ppb (1E-

9). 

Making temperature compensation: 

I have only used this for rubidium oscillators. For OCXO´s it has not worked so well and I have not 

figured out if hysteresis, jumps or other factors have been a problem. Should probably do some more 

tests some time… For LPRO rubidiums it works quite well. Remember that the temperature 

compensation factor uses the raw data from ADC2. Also check the formula in the software, especially 

the *100 factor. (Formula: for my rubidium e.g. the log shows 60 dacsteps (9E-13)  for 20 tempsteps 

(1°C) multiply by  100 gives minus 300 as factor, minus due to inverse to correct). I set the tempref to 

the ADC2 raw reading at the average lab temperature. 

Setting Warm up time 

The default warm up time is 300s, that is five minutes, this work well for most OCXO and rubidium 

oscillators. If you have an oscillator without oven, for example a TCXO, a shorter time could be set 

down to 3s by the command “w”. Save by ”s1”.  
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Adapt to different oscillator frequencies: 

If you have an oscillator on other frequencies e.g. 5, 20, 50 or 100MHz you can change the division of 

the HC390 (for 50 and 100MHz change to AC390). Even other frequencies as 12.8 or 13MHz should 

be possible to discipline if the software timer1 value 49999 is changed and the TIC hardware RC time 

constant is adjusted.   I have not tested this yet but it shall be possible for frequencies between 6.5 

and 13MHz to get all frequencies in steps of 200Hz. 

Using as a Time interval Counter: 

The most important is to find the correct linearization. See above in the instruction for time constant. 

The PICDIV PD26 is also very useful if you want to compare two 10MHz oscillators. Of course one 

might be a GPSDO, I have used my Rb GPSDO for this connected to the 10 MHz and the Device under 

Test (DUT) connected to the PICDIV input and PICDIV out to the PPS in. Here the serial monitor 

column “diff_ns” gives a quick feeling for the frequency offset. Connected to Timelab it makes an 

excellent logging frequency counter for 10MHz OCXO´s. 


